Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Protein Sci ; 31(6): e4326, 2022 06.
Article in English | MEDLINE | ID: mdl-35634767

ABSTRACT

Prion diseases are transmissible fatal neurodegenerative disorders spreading between humans and other mammals. The pathogenic agent, prion, is a protease-resistant, ß-sheet-rich protein aggregate, converted from a membrane protein called PrPC . PrPSc is the misfolded form of PrPC and undergoes self-propagation to form the infectious amyloids. Since the key hallmark of prion disease is amyloid formation, identifying and studying which segments are involved in the amyloid core can provide molecular details about prion diseases. It has been known that the prion protein could also form non-infectious fibrils in the presence of denaturants. In this study, we employed a combination of site-directed nitroxide spin-labeling, fibril seeding, and electron spin resonance (ESR) spectroscopy to identify the structure of the in vitro-prepared full-length mouse prion fibrils. It is shown that in the in vitro amyloidogenesis, the formation of the amyloid core is linked to an α-to-ß structural transformation involving the segment 160-224, which contains strand 2, helix 2, and helix 3. This method is particularly suitable for examining the hetero-seeded amyloid fibril structure, as the unlabeled seeds are invisible by ESR spectroscopy. It can be applied to study the structures of different strains of infectious prions or other amyloid fibrils in the future.


Subject(s)
Prion Diseases , Prions , Amyloid/chemistry , Amyloidogenic Proteins , Animals , Electron Spin Resonance Spectroscopy/methods , Mammals , Mice , Prion Proteins/metabolism , Prions/metabolism
2.
J Phys Chem B ; 125(30): 8373-8382, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34314184

ABSTRACT

Understanding how proteins retain structural stability is not only of fundamental importance in biophysics but also critical to industrial production of antibodies and vaccines. Protein stability is known to depend mainly on two effects: internal hydrophobicity and H-bonding between the protein surface and solvent. A challenging task is to identify their individual contributions to a protein. Here, we investigate the structural stability of the apoptotic Bid protein in solutions containing various concentrations of guanidinium hydrochloride and urea using a combination of recently developed methods including the QTY (glutamine, threonine, and tyrosine) code and electron spin resonance-based peak-height analysis. We show that when the internal hydrophobicity of Bid is broken down using the QTY code, the surface H-bonding alone is sufficient to retain the structural stability intact. When the surface H-bonding is disrupted, Bid becomes sensitive to the temperature-dependent internal hydrophobicity such that it exhibits a reversible cold unfolding above water's freezing point. Using the combined approach, we show that the free-energy contributions of the two effects can be more reliably obtained. The surface H bonds are more important than the other effect in determining the structural stability of Bid protein.


Subject(s)
Hydrogen , Water , BH3 Interacting Domain Death Agonist Protein , Hydrogen Bonding , Protein Denaturation , Protein Stability
3.
J Phys Chem Lett ; 11(20): 8538-8542, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-32940468

ABSTRACT

The YtfE protein catalyzes the reduction of NO to N2O, protecting iron-sulfur clusters from nitrosylation. The structure of YtfE has a two-domain architecture, with a diiron-containing C-terminal domain linked to an N-terminal domain, in which the function of the latter is enigmatic. Here, by using electron spin resonance (ESR) spectroscopy, we show that YtfE exists in two conformational states, one of which has not been reported. Under high osmotic stress, YtfE adopts a homogeneous conformation (C state) similar to the known crystal structure. In a regular buffer, the N-terminal domain switches between the C state and a previously unidentified conformation (C' state), the latter of which has more space at the domain interface to allow the trafficking of NO molecules and thus is proposed to be a functionally active state. The conformational switch between the C and C' states is pivotal for facilitating NO access to the diiron core.

4.
Chem Asian J ; 14(22): 3981-3991, 2019 Nov 18.
Article in English | MEDLINE | ID: mdl-31389655

ABSTRACT

Spin-label electron spin resonance (ESR) has emerged as a powerful tool to characterize protein dynamics. One recent advance is the development of ESR for resolving dynamical components that occur or coexist during a biological process. It has been applied to study the complex structural and dynamical aspects of membranes and proteins, such as conformational changes in protein during translocation from cytosol to membrane, conformational exchange between equilibria in response to protein-protein and protein-ligand interactions in either soluble or membrane environments, protein oligomerization, and temperature- or hydration-dependent protein dynamics. As these topics are challenging but urgent for understanding the function of a protein on the molecular level, the newly developed ESR methods to capture individual dynamical components, even in low-populated states, have become a great complement to other existing biophysical tools.

5.
ACS Cent Sci ; 4(5): 645-655, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29806012

ABSTRACT

Solvent is essential for protein dynamics and function, but its role in regulating the dynamics remains debated. Here, we employ saturation transfer electron spin resonance (ST-ESR) to explore the issue and characterize the dynamics on a longer (from µs to s) time scale than has been extensively studied. We first demonstrate the reliability of ST-ESR by showing that the dynamical changeovers revealed in the spectra agree to liquid-liquid transition (LLT) in the state diagram of the glycerol/water system. Then, we utilize ST-ESR with four different probes to systematically map out the variation in local (site-specific) dynamics around a protein surface at subfreezing temperatures (180-240 K) in 10 mol % glycerol/water mixtures. At highly exposed sites, protein and solvent dynamics are coupled, whereas they deviate from each other when temperature is greater than LLT temperature (∼190 K) of the solvent. At less exposed sites, protein however exhibits a dynamic, which is distinct from the bulk solvent, throughout the temperature range studied. Dominant dynamic components are thus revealed, showing that (from low to high temperatures) the overall structural fluctuation, rotamer dynamics, and internal side-chain dynamics, in turn, dominate the temperature dependence of spin-label motions. The structural fluctuation component is relatively slow, collective, and independent of protein structural segments, which is thus inferred to a fundamental dynamic component intrinsic to protein. This study corroborates that bulk solvent plasticizes protein and facilitates rather than slaves protein dynamics.

6.
J Phys Chem B ; 121(17): 4355-4363, 2017 05 04.
Article in English | MEDLINE | ID: mdl-28409932

ABSTRACT

The electron spin resonance (ESR) spectra of spin-labeled proteins are sensitive to dynamics, but discrimination between the various dynamics is often difficult. Here, we report an improvement in ESR spectral sensitivity to local backbone dynamics of a protein by a methodology that performs ESR measurement when the protein is confined in the nanochannels of a mesoporous material. An extensive set of ESR data, which includes the spectra of a nitroxide-based side chain from buried and solvent-exposed sites of a T4 lysozyme (T4L) protein, were obtained over a range of temperatures, 200-300 K, to explore the dynamics of T4L under nanoconfinement. Spectra were simulated by performing theoretical fits to the data using the microscopic ordering with macroscopic disordering model. Two principle dynamic modes, which differ in mobility and ordering, are required to account for the spectra at temperatures >240 K. We show that the mobile one correlates only with the local backbone dynamics of buried sites, whereas the other reflects the difference in local hydration dynamics between the labeling sites in T4L. The assignment of the mobile component is supported by the X-ray crystallography data of T4L. Collectively, this study has demonstrated the validity of such a methodology for improving ESR sensitivity to buried sites in a protein.


Subject(s)
Bacteriophage T4/enzymology , Muramidase/chemistry , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Models, Molecular , Muramidase/isolation & purification , Muramidase/metabolism , Spin Labels
7.
ACS Chem Biol ; 10(2): 493-501, 2015 Feb 20.
Article in English | MEDLINE | ID: mdl-25375095

ABSTRACT

Under nondenaturing neutral pH conditions, full-length mouse recombinant prion protein lacking the only disulfide bridge can spontaneously convert from an α-helical-dominant conformer (α-state) to a ß-sheet-rich conformer (ß-state), which then associates into ß-oligomers, and the kinetics of this spontaneous conversion depends on the properties of the buffer used. The molecular details of this structural conversion have not been reported due to the difficulty of exploring big protein aggregates. We introduced spin probes into different structural segments (three helices and the loop between strand 1 and helix 1), and employed a combined approach of ESR spectroscopy and protein encapsulation in nanochannels to reveal local structural changes during the α-to-ß transition. Nanochannels provide an environment in which prion protein molecules are isolated from each other, but the α-to-ß transition can still occur. By measuring dipolar interactions between spin probes during the transition, we showed that helix 1 and helix 3 retained their helicity, while helix 2 unfolded to form an extended structure. Moreover, our pulsed ESR results allowed clear discrimination between the intra- and intermolecular distances between spin labeled residues in helix 2 in the ß-oligomers, making it possible to demonstrate that the unfolded helix 2 segment lies at the association interface of the ß-oligomers to form cross-ß structure.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Prions/chemistry , Animals , Mice , Models, Molecular , Prion Proteins , Protein Conformation , Protein Denaturation , Protein Folding
8.
Langmuir ; 29(45): 13865-72, 2013 Nov 12.
Article in English | MEDLINE | ID: mdl-24138087

ABSTRACT

Under nanoconfinement the formation of crystalline ice is suppressed, allowing the study of water dynamics at subfreezing temperatures. Here we report a temperature-dependent investigation (170-260 K) of the behavior of hydration water under nanoconfinement by ESR techniques. A 26-mer-long peptide and the Bax protein are studied. This study provides site-specific information about the different local hydrations concurrently present in the protein/peptide solution, enabling a decent comparison of the hydration molecules-those that are buried inside, in contact with, and detached from the protein surface. Such a comparison is not possible without employing ESR under nanoconfinement. Though the confined bulk and surface hydrations behave differently, they both possess a transition similar to the reported fragile-to-strong crossover transition around 220 K. On the contrary, this transition is absent for the hydration near the buried sites of the protein. The activation energy determined under nanoconfinement is found to be lower in surface hydration than in bulk hydration. The protein structural flexibility, derived from the interspin distance distributions P(r) at different temperatures, is obtained by dipolar ESR spectroscopy. The P(r) result demonstrates that the structural flexibility is strongly correlated with the transition in the surface water, corroborating the origin of the protein dynamical transition at subfreezing temperatures.


Subject(s)
Nanotechnology/methods , Peptides/chemistry , Water/chemistry , bcl-2-Associated X Protein/chemistry , Animals , Electron Spin Resonance Spectroscopy , Mice , Models, Molecular , Protein Conformation , Surface Properties , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...