Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(10): e79366, 2013.
Article in English | MEDLINE | ID: mdl-24205383

ABSTRACT

Parasitized individuals are often expected to be poor competitors because they are weakened by infections. Many trematode species, however, although extensively exploiting their mollusc hosts, also induce gigantism (increased host size) by diverting host resources towards growth instead of reproduction. In such systems, alternatively to reduced competitive ability due to negative effects of parasitism on host performance, larger size could allow more efficient resource acquisition and thus increase the relative competitive ability of host individuals. We addressed this hypothesis by testing the effect of a trematode parasite Diplostomum pseudospathaceum on the competitive ability of its snail host Lymnaea stagnalis. We experimentally examined the growth of snails kept in pairs in relation to their infection status and intensity of resource competition (i.e. food availability). We found that parasitized snails grew faster and their reproduction was reduced compared to unparasitized individuals indicating parasite-induced gigantism. However, growth of the snails was faster when competing with parasitized individuals compared to unparasitized snails indicating reduced competitive ability due to parasitism. The latter effect, however, was relatively weak suggesting that the effects of the parasite on snail physiology may partly override each other in determining competitive ability.


Subject(s)
Competitive Behavior , Lymnaea/parasitology , Trematoda/physiology , Animals , Body Size , Host-Parasite Interactions , Lymnaea/anatomy & histology , Lymnaea/physiology
2.
Evolution ; 65(5): 1367-75, 2011 May.
Article in English | MEDLINE | ID: mdl-21121912

ABSTRACT

Genetics, physiology, and behavior are all expected to influence the susceptibility of hosts to parasites. Furthermore, interactions between genetic and other factors are suggested to contribute to the maintenance of genetic polymorphism in resistance when the relative susceptibility of host genotypes is context dependent. We used a maternal sibship design and long- and short-term food deprivation treatments to test the role of family-level genetic variation, body condition, physiological state, and foraging behavior on the susceptibility of Lymnaea stagnalis snails to infection by a trematode parasite that uses chemical cues to locate its hosts. In experimental exposures, we found that snails in the long-term food deprivation treatment contracted fewer parasites than snails that were continuously well-fed, possibly because well-fed snails grew larger and attracted more transmission stages. When we kept the long-term feeding rates the same, but manipulated the physiological state and foraging behavior of the snails with short-term food deprivation treatment, we found that snails that were fed before the exposure contracted more parasites than snails that were fed during the exposure. This suggests that direct physiological effects of food processing, but not foraging behavior, predisposed snails to infection. Feeding treatments also affected the family-level variation in snail susceptibility, suggesting that the relative susceptibility of host genotypes was context dependent.


Subject(s)
Echinostomatidae/physiology , Lymnaea/physiology , Lymnaea/parasitology , Animals , Feeding Behavior , Finland , Food Deprivation/physiology , Genetic Variation , Host-Parasite Interactions , Lymnaea/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...