Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Antibiotics (Basel) ; 13(3)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38534642

ABSTRACT

Previously, we reported that metronidazole MICs are not dependent on the expression levels of nim genes in B. fragilis strains and we compared the proteomes of metronidazole-resistant laboratory B. fragilis strains to those of their susceptible parent strains. Here, we used RT-qPCR to correlate the expression levels of 18 candidate genes in a panel of selected, clinical nim gene-positive and -negative B. fragilis strains to their metronidazole MICs. Metronidazole MICs were correlated with the expression of certain tested genes. Specifically, lactate dehydrogenase expression correlated positively, whereas cytochrome fumarate reductase/succinate dehydrogenase, malate dehydrogenase, phosphoglycerate kinase redox and gat (GCN5-like acetyltransferase), and relA (stringent response) regulatory gene expressions correlated negatively with metronidazole MICs. This result provides evidence for the involvement of carbohydrate catabolic enzymes in metronidazole resistance in B. fragilis. This result was supported by direct substrate utilization tests. However, the exact roles of these genes/proteins should be determined in deletion-complementation tests. Moreover, the exact redox cofactor(s) participating in metronidazole activation need to be identified.

2.
Anaerobe ; 77: 102630, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36028117

ABSTRACT

OBJECTIVES: In the genus Bacteroides, the nim genes are resistance determinants for metronidazole, a nitroimidazole drug widely used against anaerobic pathogens. The Nim proteins are considered to act as nitroreductases. However, data from several studies suggest that the expression levels of Nim do not increase with increasing resistance which is conflicting with this notion. The impact of Nim protein levels on low-level metronidazole resistance, however, representing the early stage of induced resistance in the laboratory, has not been assessed as yet. METHODS: The nimA gene was cloned into two different plasmids and introduced into B. fragilis strain 638R. Expression levels of nimA mRNA were measured by RT-qPCR and compared to those in strain 638R harbouring plasmid pI417, the original clinical plasmid harbouring IS element IS1168 with the nimA gene. Further, metronidazole susceptibility was assessed by Etest and the activity of pyruvate:ferredoxin oxidoreductase (PFOR) was measured in all strains after induction of high-level metronidazole resistance. RESULTS: The level of protection against metronidazole by nimA correleated with the level of expression of nimA mRNA. Further, the activity of PFOR in highly-resistant B. fragilis 638R was only preserved when expression levels of nimA were high. CONCLUSIONS: Although the development of high-level metronidazole resistance in B. fragilis strains with a nimA gene is not caused by an increase of nimA expression as compared to the less resistant parent strains, nimA expression levels might be of decisive importance in the early stage of resistance development. This has potential implications for metronidazole resistance in clinical isolates.


Subject(s)
Bacterial Infections , Metronidazole , Humans , Metronidazole/pharmacology , Bacteroides fragilis/genetics , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Genes, Bacterial , RNA, Messenger , Anti-Bacterial Agents/pharmacology
3.
Anaerobe ; 73: 102507, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34979246

ABSTRACT

OBJECTIVES: Bacteroides fragilis has a pronounced ability to survive prolonged exposure to atmospheric oxygen. The major objective of this study was to biochemically characterize the components of the thioredoxin system in B. fragilis. The nitroreductase activity of TrxR was also assayed. METHODS: Components of the thioredoxin system were expressed in E. coli and used in a disulfide reductase activity assay. Activity of TrxR was measured with purified recombinant enzyme or with cell extracts after or without exposure to oxygen or hydrogen peroxide, respectively. RESULTS: Of all six thioredoxins tested, only thioredoxins A, D, and F were reduced by recombinant TrxR and natural TrxR present in B. fragilis cell extracts. Exposure to oxygen and hydrogen peroxide increased the activity of TrxR. Further, B. fragilis TrxR acts as a nitroreductase with furazolidone or 1-Chloro-2,4-dinitrobenzene as substrates but cannot reduce metronidazole. CONCLUSION: TrxR shows an increase in activity under the conditions of oxidative stress and exerts nitroreductase activity.


Subject(s)
Bacteroides fragilis , Oxidative Stress , Thioredoxin-Disulfide Reductase , Bacteroides fragilis/enzymology , Escherichia coli/genetics , Escherichia coli/metabolism , Thioredoxin-Disulfide Reductase/genetics , Thioredoxin-Disulfide Reductase/metabolism , Thioredoxins/genetics , Thioredoxins/metabolism
4.
Int J Mol Sci ; 20(12)2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31242583

ABSTRACT

Ischemic stroke induces brain injury via thrombotic or embolic mechanisms involving large or small vessels. Cystathionine ß-synthase deficiency (CBS), an inborn error of metabolism, is associated with vascular thromboembolism, the major cause of morbidity and mortality in affected patients. Because thromboembolism involves the brain vasculature in these patients, we hypothesize that CBS deficiency and ischemic stroke have similar molecular phenotypes. We used label-free mass spectrometry for quantification of changes in serum proteomes in CBS-deficient patients (n = 10) and gender/age-matched unaffected controls (n = 14), as well as in patients with cardioembolic (n = 17), large-vessel (n = 26), or lacunar (n = 25) ischemic stroke subtype. In CBS-deficient patients, 40 differentially expressed serum proteins were identified, of which 18 were associated with elevated homocysteine (Hcy) and 22 were Hcy-independent. We also identified Hcy-independent differentially expressed serum proteins in ischemic stroke patients, some of which were unique to a specific subtype: 10 of 32 for cardioembolic vs. large-vessel, six of 33 for cardioembolic vs. lacunar, and six of 23 for large-vessel vs. lacunar. There were significant overlaps between proteins affected by CBS deficiency and ischemic stroke, particularly the cardioembolic subtype, similar to protein overlaps between ischemic stroke subtypes. Top molecular pathways affected by CBS deficiency and ischemic stroke subtypes included acute phase response signaling and coagulation system. Similar molecular networks centering on NFκB were affected by CBS deficiency and stroke subtypes. These findings suggest common mechanisms involved in the pathologies of CBS deficiency and ischemic stroke subtypes.


Subject(s)
Biomarkers/blood , Brain Ischemia/complications , Cystathionine beta-Synthase/deficiency , Proteome , Proteomics , Stroke/blood , Stroke/etiology , Adult , Computational Biology/methods , Female , Humans , Male , Middle Aged , Proteomics/methods , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...