Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Anal Chem ; 95(49): 18091-18098, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38008904

ABSTRACT

2D NOESY and TOCSY play central roles in contemporary NMR. We have recently discussed how solvent-driven exchanges can significantly enhance the sensitivity of such methods when attempting correlations between labile and nonlabile protons. This study explores two scenarios where similar sensitivity enhancements can be achieved in the absence of solvent exchange: the first one involves biomolecular paramagnetic systems, while the other involves small organic molecules in natural abundance. It is shown that, in both cases, the effects introduced by either differential paramagnetic shift and relaxation or by polarization sharing among networks of protons can provide a similar sensitivity boost, as previously discussed for solvent exchange. The origin and potential of the resulting enhancements are analyzed, and experiments that demonstrate them in protein and natural products are exemplified. Limitations and future improvements of these approaches are also briefly discussed.

2.
Anal Chem ; 95(32): 11926-11933, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37535003

ABSTRACT

Many key building blocks of life contain nitrogen moieties. Despite the prevalence of nitrogen-containing metabolites in nature, 15N nuclei are seldom used in NMR-based metabolite assignment due to their low natural abundance and lack of comprehensive chemical shift databases. However, with advancements in isotope labeling strategies, 13C and 15N enriched metabolites are becoming more common in metabolomic studies. Simple multidimensional nuclear magnetic resonance (NMR) experiments that correlate 1H and 15N via single bond 1JNH or multiple bond 2-3JNH couplings using heteronuclear single quantum coherence (HSQC) or heteronuclear multiple bond coherence are well established and routinely applied for structure elucidation. However, a 1H-15N correlation spectrum of a metabolite mixture can be difficult to deconvolute, due to the lack of a 15N specific database. In order to bridge this gap, we present here a broadband 15N-edited 1H-13C HSQC NMR experiment that targets metabolites containing 15N moieties. Through this approach, nitrogen-containing metabolites, such as amino acids, nucleotide bases, and nucleosides, are identified based on their 13C, 1H, and 15N chemical shift information. This approach was tested and validated using a [15N, 13C] enriched Daphnia magna (water flea) metabolite extract, where the number of clearly resolved 15N-containing peaks increased from only 11 in a standard HSQC to 51 in the 15N-edited HSQC, and the number of obscured peaks decreased from 59 to just 7. The approach complements the current repertoire of NMR techniques for mixture deconvolution and holds considerable potential for targeted metabolite NMR in 15N, 13C enriched systems.


Subject(s)
Amino Acids , Metabolomics , Magnetic Resonance Spectroscopy/methods , Nuclear Magnetic Resonance, Biomolecular/methods , Metabolomics/methods , Nitrogen
3.
J Am Chem Soc ; 145(11): 6289-6298, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36877814

ABSTRACT

Magnetization transfer experiments are versatile nuclear magnetic resonance (NMR) tools providing site-specific information. We have recently discussed how saturation magnetization transfer (SMT) experiments could leverage repeated repolarizations arising from exchanges between labile and water protons to enhance connectivities revealed via the nuclear Overhauser effect (NOE). Repeated experience with SMT has shown that a number of artifacts may arise in these experiments, which may confound the information being sought - particularly when seeking small NOEs among closely spaced resonances. One of these pertains to what we refer to as "spill-over" effects, originating from the use of long saturation pulses leading to changes in the signals of proximate peaks. A second, related but in fact different effect, derives from what we describe as NOE "oversaturation", a phenomenon whereby the use of overtly intense RF fields overwhelms the cross-relaxation signature. The origin and ways to avoid these two effects are described. A final source of potential artifact arises in applications where the labile 1Hs of interest are bound to 15N-labeled heteronuclei. SMT's long 1H saturation times will then be usually implemented while under 15N decoupling based on cyclic schemes leading to decoupling sidebands. Although these sidebands usually remain invisible in NMR, they may lead to a very efficient saturation of the main resonance when touched by SMT frequencies. All of these phenomena are herein experimentally demonstrated, and solutions to overcome them are proposed.

4.
Anal Chem ; 94(4): 2271-2278, 2022 02 01.
Article in English | MEDLINE | ID: mdl-35050622

ABSTRACT

NMR supersequences allow multiple 2D NMR data sets to be acquired in greatly reduced experiment durations through tailored detection of NMR responses within concatenated modules. In NOAH (NMR by Ordered Acquisition using 1H detection) experiments, up to five modules can be combined (or even more when parallel modules are employed), which in theory leads to thousands of plausible supersequences. However, constructing a pulse program for a supersequence is highly time-consuming, requires specialized knowledge, and is error-prone due to its complexity; this has prevented the true potential of the NOAH concept from being fully realized. We introduce here an online tool named GENESIS (GENEration of Supersequences In Silico), available via https://nmr-genesis.co.uk, which systematically generates pulse programs for arbitrary NOAH supersequences compatible with Bruker spectrometers. The GENESIS website provides a unified "one-stop" interface where users may obtain customized supersequences for specific applications, together with all associated acquisition and processing scripts, as well as detailed instructions for running NOAH experiments. Furthermore, it enables the rapid dissemination of new developments in NOAH sequences, such as new modules or improvements to existing modules. Here, we present several such enhancements, including options for solvent suppression, new modules based on pure shift NMR, and improved artifact reduction in HMBC and HMQC modules.


Subject(s)
Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Solvents
5.
Anal Chem ; 93(15): 6112-6119, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33821620

ABSTRACT

Sensitivity-improved versions of two-dimensional (2D) 13C-1H HSQC (heteronuclear single quantum coherence) and HSQC-TOCSY (HSQC-total correlation spectroscopy) NMR experiments optimized for small biological molecules and their complex mixtures encountered in metabolomics are presented that preserve the magnetization of 1H spins not directly attached to 13C spins. This allows (i) the application of rapid acquisition techniques to substantially shorten measurement time and (ii) their incorporation into supersequences (NOAH-NMR by ordered acquisition using 1H detection) for the compact acquisition of multiple 2D NMR data sets with significant gains in sensitivity, resolution, and/or time. The new pulse sequences, which are demonstrated for both metabolite model mixtures and mouse urine, offer an attractive approach for the efficient measurement of multiple 2D NMR spectra (HSQCsi and/or HSQCsi-TOCSY and TOCSY) of metabolomics samples in a single experiment for the accurate and comprehensive identification and quantitation of metabolites. These new methods bring to bear the advantages of 2D NMR to metabolomics studies with larger cohorts of samples.


Subject(s)
Magnetic Resonance Imaging , Metabolomics , Animals , Complex Mixtures , Magnetic Resonance Spectroscopy , Mice
6.
J Am Chem Soc ; 141(5): 1857-1861, 2019 02 06.
Article in English | MEDLINE | ID: mdl-30648853

ABSTRACT

While 13C-based Incredible Natural Abundance DoublE QUAntum Transfer Experiment (INADEQUATE) experiments offer an attractive alternative for establishing molecular structures, they suffer from low sensitivities arising from the scarcity of spin pairs present at natural abundance. Herein we demonstrate that dissolution dynamic nuclear polarization (dDNP) provides sufficient sensitivity to acquire 1D 13C INADEQUATE spectra in a single scan and at natural abundance. Moreover, if steps are adopted to endow sub-Hertz precision to these measurements, they allow one to measure carbon-carbon J couplings over both one and multiple bonds for each chemical site. As these JCC-couplings are usually sufficiently distinct to enable univocal pairing of the nuclei involved, essentially the same information as in 2D INADEQUATE can be obtained. The feasibility of the method is demonstrated for a range of compounds, including natural products such as α-pinene, menthol and limonene. Features and extensions of this approach are briefly discussed.

7.
J Magn Reson ; 156(1): 152-4, 2002 May.
Article in English | MEDLINE | ID: mdl-12081453

ABSTRACT

The design of a broadband 4-mm magic-angle spinning (MAS) X-(1)H/(19)F double resonance probe for cross-polarization (CP)/MAS NMR studies at 21.15 T ((1)H at 900 MHz) is described. The high-frequency (1)H/(19)F channel employs a new and efficient transmission line tuning design. The first (13)C CP/MAS NMR spectra recorded at 21.15 T have been obtained with this probe and exhibit the best S/N per milligram sample of hexamethylbenzene achieved so far for a 4-mm rotor.


Subject(s)
Magnetic Resonance Spectroscopy/instrumentation , Benzene Derivatives/chemistry , Equipment Design , Magnetic Resonance Spectroscopy/methods
9.
J Magn Reson ; 151(1): 142-5, 2001 Jul.
Article in English | MEDLINE | ID: mdl-11444949

ABSTRACT

Broadband decoupling techniques generate undesirable cycling sidebands. The new two-dimensional technique described here allows separation of these sidebands from the main peaks by spreading the sideband responses in the indirectly detected dimension (F(1)) according to their frequency separations from the parent peaks, leaving the main resonances at zero frequency in F(1). This trace at zero frequency shows a thousandfold suppression of the residual sidebands, making possible the detection of very weak signals from dilute constituents of the sample. The experimental results can be displayed as one-dimensional "quiet decoupling" spectra without any significant loss of sensitivity. The new technique (DESIRE-decoupling sideband resolved spectroscopy) is simple, robust, and straightforward to implement.

10.
J Biomol NMR ; 19(2): 141-51, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11256810

ABSTRACT

Extensive spectral overlap presents a major problem for the NMR study of large RNAs. Here we present NMR techniques for resolution enhancement and spectral simplification of fully 13C labelled RNA. High-resolution 1H-13C correlation spectra are obtained by combining TROSY-type experiments with multiple-band-selective homonuclear 13C decoupling. An additional C-C filter sequence performs base-type-selective spectral editing. Signal loss during the filter is significantly reduced because of TROSY-type spin evolution. These tools can be inserted in any 13C-edited multidimensional NMR experiment. As an example we have chosen the 13C-edited NOESY which is a crucial experiment for sequential resonance assignment of RNA. Application to a 33-nucleotide RNA aptamer and a 76-nucleotide tRNA illustrates the potential of this new methodology.


Subject(s)
Magnetic Resonance Spectroscopy/methods , RNA/chemistry , Base Sequence , Carbon Isotopes , Hydrogen/chemistry , Models, Molecular , Molecular Sequence Data , Nucleic Acid Conformation , RNA, Transfer/chemistry
11.
J Magn Reson ; 148(1): 115-20, 2001 Jan.
Article in English | MEDLINE | ID: mdl-11133283

ABSTRACT

The effect of magic angle spinning (MAS) of liquids upon the performance of various isotropic mixing sequences is investigated. Although the mathematical formalism for isotropic mixing under MAS conditions is similar for both liquids and solids, the mechanism through which the coherence transfer is disturbed is different. In liquids, the use of sample spinning in the presence of both RF and magnetic-field inhomogeneities introduces a modulation of the effective field, which compromises the performance of the conventional mixing sequences. This effect is further amplified by supercycles, which normally improve the performance of the mixing and decoupling experiments. It is demonstrated that adiabatic mixing sequences are less susceptible to such modulations and perform considerably better in TOCSY MAS experiments. The best performance of TOCSY MAS is observed under the rotational resonance condition when the sample appears static in the nutation reference frame.

12.
J Magn Reson ; 146(1): 240-4, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10968979

ABSTRACT

During the course of some water presaturation experiments with a shaped pulse envelope we observed inverted responses from certain signals flanking the water response. This phenomenon did not occur when a rectangular presaturation envelope was used. Apparently the leading and trailing edges of the shaped pulse act as adiabatic sweeps, causing the coupled magnetizations in question to be spin-locked. This gives rise to Hartmann-Hahn coherence transfer, and when the spin lock duration is equal to 1/(2J) the trajectories are such as to carry these magnetization vectors to the -z axis, leading to inverted signals in the final spectrum. Copyright 2000 Academic Press.

13.
J Biomol NMR ; 15(4): 335-8, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10685341

ABSTRACT

Residual heteronuclear dipolar couplings obtained from partially oriented protein samples can provide unique NMR constraints for protein structure determination. However, partial orientation of protein samples also causes severe 1H line broadening resulting from residual 1H-1H dipolar couplings. In this communication we show that band-selective 1H homonuclear decoupling during data acquisition is an efficient way to suppress residual 1H-1H dipolar couplings, resulting in spectra that are still amenable to solution NMR analysis, even with high degrees of alignment. As an example, we present a novel experiment with improved sensitivity for the measurement of one-bond 1HN-15N residual dipolar couplings in a protein sample dissolved in magnetically aligned liquid crystalline bicelles.


Subject(s)
Escherichia coli Proteins , Nuclear Magnetic Resonance, Biomolecular/methods , Proteins/chemistry , Anisotropy , Crystallization , HSP70 Heat-Shock Proteins/chemistry , Motion , Solutions
14.
J Magn Reson ; 135(2): 361-7, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9878464

ABSTRACT

Adiabatic spin inversion has been used in the liquid state very efficiently for decoupling purposes. Here we show that it can also be adapted for spin mixing experiments, such as the TOCSY and clean TOCSY experiment, and is superior to previously employed mixing sequences. The main advantage of adiabatic mixing sequences over the conventional mixing schemes used in liquid state experiments is an extremely low sensitivity to RF field inhomogeneity and miscalibration of the B1 field strength. The method is evaluated experimentally by comparing results obtained with different mixing schemes in the basic 2D TOCSY experiment. In addition to higher reliability, adiabatic mixing provides a sensitivity improvement of ca. 20% as compared to conventional mixing schemes. This is explained by higher signal losses due to RF inhomogeneity in the experiments employing traditional mixing schemes. More significant sensitivity improvements can be expected in situations where RF homogeneity is traditionally poor, for example, in large volume probes and magnetic resonance imaging experiments.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Algorithms , Calibration , Hydrogen , Image Enhancement , Magnetic Resonance Imaging , Reproducibility of Results , Sensitivity and Specificity , Solutions , Time Factors
15.
NMR Biomed ; 10(8): 372-80, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9542735

ABSTRACT

Current methods for broadband heteronuclear decoupling are reviewed from a historical perspective. The principal concern is that decoupling should be effective over a wide range of chemical shifts without undue radiofrequency heating of the sample, particularly when human patients are involved. Continuous-wave methods are the least efficient in this respect, followed by noise decoupling. Composite pulse schemes offer a more effective use of radiofrequency power, while adiabatic passage methods are the most efficient of all. Bi-level decoupling employs a low level of radiofrequency irradiation during the relaxation delay to maintain the nuclear Overhauser effect, with a higher level during signal acquisition in order to decouple over a wide frequency band. All decoupling sequences introduce cycling sidebands into the observed spectrum, and schemes are described to minimize the intensity of these artifacts. In part II, practical applications of decoupling methods are examined in the context of in vivo spectroscopy, where the improvements in sensitivity and resolution through broadband decoupling can be critical for solving clinical problems. Attention is focused on the regulatory limits on power deposition in these experiments. A tabulation of the existing work on decoupling in biological tissue is presented, mainly involving 31P and 13C spectroscopy in vivo or in vitro.


Subject(s)
Nuclear Magnetic Resonance, Biomolecular/methods , Electromagnetic Fields , Humans
16.
J Magn Reson ; 129(2): 219-21, 1997 Dec.
Article in English | MEDLINE | ID: mdl-9441888

ABSTRACT

The appearance of sidebands in adiabatic decoupling can be substantially reduced simply by matching the sweep rate and direction of adiabatic pulses with the evolution of different J couplings. Alternatively, a matched adiabatic defocusing pulse is applied just before the decoupling is turned on, providing an efficient means for complete suppression of sidebands. Copyright 1997 Academic Press. Copyright 1997Academic Press

SELECTION OF CITATIONS
SEARCH DETAIL
...