Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 570(7759): 102-106, 2019 06.
Article in English | MEDLINE | ID: mdl-31168103

ABSTRACT

The Earth's crust-mantle boundary, the Mohorovicic discontinuity, has been traditionally considered to be the interface between the magnetic crust and the non-magnetic mantle1. However, this assumption has been questioned by geophysical observations2,3 and by the identification of magnetic remanence in mantle xenoliths4, which suggest mantle magnetic sources. Owing to their high critical temperatures, iron oxides are the only potential sources of magnetic anomalies at mantle depths5. Haematite (α-Fe2O3) is the dominant iron oxide in subducted lithologies at depths of 300 to 600 kilometres, delineated by the thermal decomposition of magnetite and the crystallization of a high-pressure magnetite phase deeper than about 600 kilometres6. The lack of data on the magnetic properties of haematite at relevant pressure-temperature conditions, however, hinders the identification of magnetic boundaries within the mantle and their contribution to observed magnetic anomalies. Here we apply synchrotron Mössbauer source spectroscopy in laser-heated diamond anvil cells to investigate the magnetic transitions and critical temperatures in Fe2O3 polymorphs7 at pressures and temperatures of up to 90 gigapascals and 1,300 kelvin, respectively. Our results show that haematite remains magnetic at the depth of the transition zone in the Earth's mantle in cold or very cold subduction geotherms, forming a frame of deep magnetized rocks in the West Pacific region. The deep magnetic sources spatially correlate with preferred paths of the Earth's virtual geomagnetic poles during reversals8 that might not reflect the geometry of the transitional field. Rather, the paths might be an artefact caused by magnetized haematite-bearing rocks in cold subducting slabs at mid-transition zone depths. Such deep sources should be taken into account when carrying out inversions of the Earth's geomagnetic data9, and especially in studies of planetary bodies that no longer have a dynamo10, such as Mars.

2.
Nat Commun ; 9(1): 2756, 2018 07 16.
Article in English | MEDLINE | ID: mdl-30013071

ABSTRACT

Poly-nitrogen compounds have been considered as potential high energy density materials for a long time due to the large number of energetic N-N or N=N bonds. In most cases high nitrogen content and stability at ambient conditions are mutually exclusive, thereby making the synthesis of such materials challenging. One way to stabilize such compounds is the application of high pressure. Here, through a direct reaction between Fe and N2 in a laser-heated diamond anvil cell, we synthesize three ironnitrogen compounds Fe3N2, FeN2 and FeN4. Their crystal structures are revealed by single-crystal synchrotron X-ray diffraction. Fe3N2, synthesized at 50 GPa, is isostructural to chromium carbide Cr3C2. FeN2 has a marcasite structure type and features covalently bonded dinitrogen units in its crystal structure. FeN4, synthesized at 106 GPa, features polymeric nitrogen chains of [N42-]n units. Based on results of structural studies and theoretical analysis, [N42-]n units in this compound reveal catena-poly[tetraz-1-ene-1,4-diyl] anions.

3.
Rev Sci Instrum ; 88(8): 084501, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28863683

ABSTRACT

A portable double-sided pulsed laser heating system for diamond anvil cells has been developed that is able to stably produce laser pulses as short as a few microseconds with repetition frequencies up to 100 kHz. In situ temperature determination is possible by collecting and fitting the thermal radiation spectrum for a specific wavelength range (particularly, between 650 nm and 850 nm) to the Planck radiation function. Surface temperature information can also be time-resolved by using a gated detector that is synchronized with the laser pulse modulation and space-resolved with the implementation of a multi-point thermal radiation collection technique. The system can be easily coupled with equipment at synchrotron facilities, particularly for nuclear resonance spectroscopy experiments. Examples of applications include investigations of high-pressure high-temperature behavior of iron oxides, both in house and at the European Synchrotron Radiation Facility using the synchrotron Mössbauer source and nuclear inelastic scattering.

4.
Nat Commun ; 7: 10661, 2016 Feb 11.
Article in English | MEDLINE | ID: mdl-26864300

ABSTRACT

Although chemically very simple, Fe2O3 is known to undergo a series of enigmatic structural, electronic and magnetic transformations at high pressures and high temperatures. So far, these transformations have neither been correctly described nor understood because of the lack of structural data. Here we report a systematic investigation of the behaviour of Fe2O3 at pressures over 100 GPa and temperatures above 2,500 K employing single crystal X-ray diffraction and synchrotron Mössbauer source spectroscopy. Crystal chemical analysis of structures presented here and known Fe(II, III) oxides shows their fundamental relationships and that they can be described by the homologous series nFeO·mFe2O3. Decomposition of Fe2O3 and Fe3O4 observed at pressures above 60 GPa and temperatures of 2,000 K leads to crystallization of unusual Fe5O7 and Fe25O32 phases with release of oxygen. Our findings suggest that mixed-valence iron oxides may play a significant role in oxygen cycling between earth reservoirs.

5.
Rev Sci Instrum ; 86(11): 114501, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26628151

ABSTRACT

Developments in pulsed laser heating applied to nuclear resonance techniques are presented together with their applications to studies of geophysically relevant materials. Continuous laser heating in diamond anvil cells is a widely used method to generate extreme temperatures at static high pressure conditions in order to study the structure and properties of materials found in deep planetary interiors. The pulsed laser heating technique has advantages over continuous heating, including prevention of the spreading of heated sample and/or the pressure medium and, thus, a better stability of the heating process. Time differentiated data acquisition coupled with pulsed laser heating in diamond anvil cells was successfully tested at the Nuclear Resonance beamline (ID18) of the European Synchrotron Radiation Facility. We show examples applying the method to investigation of an assemblage containing ε-Fe, FeO, and Fe3C using synchrotron Mössbauer source spectroscopy, FeCO3 using nuclear inelastic scattering, and Fe2O3 using nuclear forward scattering. These examples demonstrate the applicability of pulsed laser heating in diamond anvil cells to spectroscopic techniques with long data acquisition times, because it enables stable pulsed heating with data collection at specific time intervals that are synchronized with laser pulses.

6.
Nat Commun ; 4: 1427, 2013.
Article in English | MEDLINE | ID: mdl-23385572

ABSTRACT

Iron can adopt different spin states in the lower mantle. Previous studies indicate that the dominant lower-mantle phase, magnesium silicate perovskite (which contains at least half of its iron as Fe(3+)), undergoes a Fe(3+) high-spin to low-spin transition that has been suggested to cause seismic velocity anomalies and a drop in laboratory-measured electrical conductivity. Here we apply a new synchrotron-based method of Mössbauer spectroscopy and show that Fe(3+) remains in the high-spin state in lower-mantle perovskite at conditions throughout the lower mantle. Electrical conductivity measurements show no conductivity drop in samples with high Fe(3+), suggesting that the conductivity drop observed previously on samples with high Fe(2+) is due to a transition of Fe(2+) to the intermediate-spin state. Correlation of transport and elastic properties of lower-mantle perovskite with electromagnetic and seismic data may provide a new probe of heterogeneity in the lower mantle.

7.
Rev Sci Instrum ; 83(12): 124501, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23278006

ABSTRACT

The diamond anvil cell (DAC) technique coupled with laser heating is a major method for studying materials statically at multimegabar pressures and at high temperatures. Recent progress in experimental techniques, especially in high-pressure single crystal X-ray diffraction, requires portable laser heating systems which are able to heat and move the DAC during data collection. We have developed a double-sided laser heating system for DACs which can be mounted within a rather small (~0.1 m(2)) area and has a weight of ~12 kg. The system is easily transferable between different in-house or synchrotron facilities and can be assembled and set up within a few hours. The system was successfully tested at the High Pressure Station of White Beam (ID09a) and Nuclear Resonance (ID18) beamlines of the European Synchrotron Radiation Facility. We demonstrate examples of application of the system to a single crystal X-ray diffraction investigation of (Mg(0.87),Fe(3+) (0.09),Fe(2+) (0.04))(Si(0.89),Al(0.11))O(3) perovskite (ID09a) and a Synchrotron Mössbauer Source (SMS) study of (Mg(0.8)Fe(0.2))O ferropericlase (ID18).

SELECTION OF CITATIONS
SEARCH DETAIL
...