Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 186
Filter
1.
Antioxidants (Basel) ; 13(6)2024 May 31.
Article in English | MEDLINE | ID: mdl-38929116

ABSTRACT

Imbalances in the redox state of the liver arise during metabolic processes, inflammatory injuries, and proliferative liver disorders. Acute exposure to intracellular reactive oxygen species (ROS) results from high levels of oxidative stress (OxS) that occur in response to hepatic ischemia/reperfusion injury (IRI) and metabolic diseases of the liver. Antisense oligonucleotides (ASOs) are an emerging class of gene expression modulators that target RNA molecules by Watson-Crick binding specificity, leading to RNA degradation, splicing modulation, and/or translation interference. Here, we review ASO inhibitor/activator strategies to modulate transcription and translation that control the expression of enzymes, transcription factors, and intracellular sensors of DNA damage. Several small-interfering RNA (siRNA) drugs with N-acetyl galactosamine moieties for the liver have recently been approved. Preclinical studies using short-activating RNAs (saRNAs), phosphorodiamidate morpholino oligomers (PMOs), and locked nucleic acids (LNAs) are at the forefront of proof-in-concept therapeutics. Future research targeting intracellular OxS-related pathways in the liver may help realize the promise of precision medicine, revolutionizing the customary approach to caring for and treating individuals afflicted with liver-specific conditions.

2.
JCI Insight ; 9(3)2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329125

ABSTRACT

Although cold preservation remains the gold standard in organ transplantation, cold stress-induced cellular injury is a significant problem in clinical orthotopic liver transplantation (OLT). Because a recent study showed that cold stress activates ferroptosis, a form of regulated cell death, we investigated whether and how ferroptosis determines OLT outcomes in mice and humans. Treatment with ferroptosis inhibitor (ferrostatin-1) during cold preservation reduced lipid peroxidation (malondialdehyde; MDA), primarily in liver sinusoidal endothelial cells (LSECs), and alleviated ischemia/reperfusion injury in mouse OLT. Similarly, ferrostatin-1 reduced cell death in cold-stressed LSEC cultures. LSECs deficient in nuclear factor erythroid 2-related factor 2 (NRF2), a critical regulator of ferroptosis, were susceptible to cold stress-induced cell death, concomitant with enhanced endoplasmic reticulum (ER) stress and expression of mitochondrial Ca2+ uptake regulator (MICU1). Indeed, supplementing MICU1 inhibitor reduced ER stress, MDA expression, and cell death in NRF2-deficient but not WT LSECs, suggesting NRF2 is a critical regulator of MICU1-mediated ferroptosis. Consistent with murine data, enhanced liver NRF2 expression reduced MDA levels, hepatocellular damage, and incidence of early allograft dysfunction in human OLT recipients. This translational study provides a clinically applicable strategy in which inhibition of ferroptosis during liver cold preservation mitigates OLT injury by protecting LSECs from peritransplant stress via an NRF2-regulatory mechanism.


Subject(s)
Cyclohexylamines , Ferroptosis , Liver Transplantation , Phenylenediamines , Mice , Humans , Animals , Liver Transplantation/adverse effects , Endothelial Cells/metabolism , NF-E2-Related Factor 2/metabolism , Cold-Shock Response , Liver/metabolism , Calcium-Binding Proteins/metabolism , Mitochondrial Membrane Transport Proteins/metabolism
3.
Hepatol Commun ; 8(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38206205

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) is a significant clinical concern in liver transplantation, with a key influence on short-term and long-term allograft and patient survival. Myeloid cells trigger and sustain tissue inflammation and damage associated with IRI, but the mechanisms regulating these activities are unknown. To address this, we investigated the molecular characteristics of intragraft myeloid cells present in biopsy-proven IRI- and IRI+ liver transplants. METHODS: RNA-sequencing was performed on 80 pre-reperfusion and post-reperfusion biopsies from 40 human recipients of liver transplantation (23 IRI+, 17 IRI-). We used transcriptional profiling and computational approaches to identify specific gene coexpression network modules correlated with functional subsets of MPO+, lysozyme+, and CD68+ myeloid cells quantified by immunohistochemistry on sequential sections from the same patient biopsies. RESULTS: A global molecular map showed gene signatures related to myeloid activation in all patients regardless of IRI status; however, myeloid cell subsets differed dramatically in their spatial morphology and associated gene signatures. IRI- recipients were found to have a natural corticosteroid production and response profile from pre-reperfusion to post-reperfusion, particularly among monocytes/macrophages. The pre-reperfusion signature of IRI+ recipients included acute inflammatory responses in neutrophils and increased translation of adaptive immune-related genes in monocytes/macrophages coupled with decreased glucocorticoid responses. Subsequent lymphocyte activation at post-reperfusion identified transcriptional programs associated with the transition to adaptive immunity found only among IRI+ recipients. CONCLUSIONS: Myeloid subset-specific genes and related signaling pathways provide targets for the development of therapeutic strategies aimed at limiting IRI in the clinical setting of liver transplantation.


Subject(s)
Liver Transplantation , Reperfusion Injury , Humans , Liver Transplantation/adverse effects , Reperfusion Injury/genetics , Leukocytes , Adaptive Immunity , Biopsy , Inflammation
4.
Antioxid Redox Signal ; 40(10-12): 632-635, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37503638

ABSTRACT

Targeted modulation of a dynamic interplay between transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) and its negative regulator, Kelch-like ECH-associated protein 1 (KEAP1), is of paramount importance in maintaining redox, metabolic, and protein homeostasis and regulating inflammation responses. Indeed, inducible NRF2 activation promotes cytoprotective mechanisms against many immune, neurodegenerative, and metabolic disorders with oxidative stress and inflammation as underlying pathological features. In this ARS Forum, five state-of-the-art reviews and two original research communications report on canonical and newly discovered molecular mechanisms by which the NRF2-KEAP1 axis controls fundamental cell life or death decisions and exerts biological functions under environmental and endogenous stress conditions. Although the use of NRF2 activators represents a promising pharmacological strategy to regain and maintain homeostasis, challenges regarding their double-edged character, target specificity, pharmacodynamic properties, efficacy, and safety must be critically considered. More translational studies are warranted before NRF2 agonists (inducers or enhancers) become an integral part of our therapeutic armamentarium. Antioxid. Redox Signal. 40, 632-635.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Humans , NF-E2-Related Factor 2/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Inflammation/metabolism , Oxidation-Reduction
6.
Cell Death Dis ; 14(11): 762, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37996424

ABSTRACT

Sirtuin 1 (SIRT1) is a histone/protein deacetylase in the cellular response to inflammatory, metabolic, and oxidative stressors. We previously reported that myeloid SIRT1 regulates the inflamed liver's canonical pyroptosis cell death pathway. However, whether/how hepatocyte SIRT1 is engaged in programmed cell death in the cold-stressed liver remains uncertain. Here, we undertook translational studies in human and mouse orthotopic liver transplantation (OLT) to interrogate the significance of hepatocyte-specific SIRT1 in cold-stored donor livers and liver grafts after reperfusion. In the clinical arm of sixty human OLT patients, hepatic SIRT1 levels in cold-preserved donor livers correlated with the anti-apoptotic Bcl-2 expression. After reperfusion, improved OLT function was accompanied by hepatic SIRT1 levels negatively associated with cleaved caspase-3 expression. In the experimental arm, we compared FLOX-control with hepatocyte-specific SIRT1-KO livers after orthotopic transplantation into WT mouse recipients, parallel with primary murine hepatocyte cultures subjected to cold activation with/without knockdown of SIRT1, GSDME, and IL18Rß. Indeed, hepatocyte SIRT1 deficiency upregulated apoptosis and GSDME-mediated programmed cell death, deteriorating hepatocellular function and shortening OLT survival. Augmented GSDME processing, accompanied by increased secretion of IL18 by stressed hepatocytes, was prominent in SIRT1-deficient, cold-stored livers. Hepatocyte SIRT1 expression regulated anti-apoptotic Bcl-2/XIAP proteins, suppressed cold stress-triggered apoptosis, and mitigated GSDME licensing to release IL18. Notably, consistent with the ability of IL18 to depress hepatocyte SIRT1 and Bcl-2/XIAP in vitro, IL18 neutralization in vivo prevented hepatocellular damage and restored the anti-apoptotic phenotype in otherwise injury-prone SIRT1-deficient OLTs. In conclusion, this translational study identifies a novel hepatocyte SIRT1-IL18 molecular circuit as a therapeutic target in the mechanism underpinning hepatocyte death pathways in human and mouse liver transplantation.


Subject(s)
Liver Transplantation , Reperfusion Injury , Humans , Mice , Animals , Sirtuin 1/genetics , Sirtuin 1/metabolism , Interleukin-18/metabolism , Liver/metabolism , Hepatocytes/metabolism , Apoptosis , Reperfusion Injury/metabolism , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism
7.
Transplant Direct ; 9(11): e1550, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37876917

ABSTRACT

Background: Nonalcoholic steatohepatitis (NASH) is a severe immune-mediated stage of nonalcoholic fatty liver disease that is rapidly becoming the most common etiology requiring liver transplantation (LT), with Hispanics bearing a disproportionate burden. This study aimed to uncover the underlying immune mechanisms of the disparities experienced by Hispanic patients undergoing LT for NASH. Methods: We enrolled 164 LT recipients in our institutional review board-approved study, 33 of whom presented with NASH as the primary etiology of LT (20%), with 16 self-reported as Hispanic (48%). We investigated the histopathology of prereperfusion and postreperfusion biopsies, clinical liver function tests, longitudinal soluble cytokines via 38-plex Luminex, and immune cell phenotypes generated by prereperfusion and postreperfusion blood using 14-color flow cytometry and enzyme-linked immunosorbent assay. Results: Hispanic LT recipients transplanted for NASH were disproportionately female (81%) and disproportionately suffered poor outcomes in the first year posttransplant, including rejection (26%) and death (38%). Clinically, we observed increased pro-inflammatory and apoptotic histopathological features in biopsies, increased AST/international normalized ratio early posttransplantation, and a higher incidence of presensitization to mismatched HLA antigens expressed by the donor allograft. Experimental investigations revealed that blood from female Hispanic NASH patients showed significantly increased levels of leukocyte-attracting chemokines, innate-to-adaptive switching cytokines and growth factors, HMGB1 release, and TLR4/TLR8/TLR9/NOD1 activation, and produced a pro-inflammatory, pro-apoptotic macrophage phenotype with reduced CD14/CD68/CD66a/TIM-3 and increased CD16/CD11b/HLA-DR/CD80. Conclusions: A personalized approach to reducing immunological risk factors is urgently needed for this endotype in Hispanics with NASH requiring LT, particularly in females.

8.
Article in English | MEDLINE | ID: mdl-37776178

ABSTRACT

Significance: Oxidative stress (OS) and inflammation are inducers of tissue injury. Alternative splicing (AS) is an essential regulatory step for diversifying the eukaryotic proteome. Human diseases link AS to OS; however, the underlying mechanisms must be better understood. Recent Advances: Genome­wide profiling studies identify new differentially expressed genes induced by OS-dependent ischemia/reperfusion injury. Overexpression of RNA-binding protein RBFOX1 protects against inflammation. Hypoxia-inducible factor-1α directs polypyrimidine tract binding protein 1 to regulate mouse carcinoembryonic antigen-related cell adhesion molecule 1 (Ceacam1) AS under OS conditions. Heterogeneous nuclear ribonucleoprotein L variant 1 contains an RGG/RG motif that coordinates with transcription factors to influence human CEACAM1 AS. Hypoxia intervention involving short interfering RNAs directed to long-noncoding RNA 260 polarizes M2 macrophages toward an anti-inflammatory phenotype and alleviates OS by inhibiting IL-28RA gene AS. Critical Issues: Protective mechanisms that eliminate reactive oxygen species (ROS) are important for resolving imbalances that lead to chronic inflammation. Defects in AS can cause ROS generation, cell death regulation, and the activation of innate and adaptive immune factors. We propose that AS pathways link redox regulation to the activation or suppression of the inflammatory response during cellular stress. Future Directions: Emergent studies using molecule-mediated RNA splicing are being conducted to exploit the immunogenicity of AS protein products. Deciphering the mechanisms that connect misspliced OS and pathologies should remain a priority. Controlled release of RNA directly into cells with clinical applications is needed as the demand for innovative nucleic acid delivery systems continues to be demonstrated.

9.
Sci Transl Med ; 15(707): eadf2059, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37531413

ABSTRACT

Although alternative splicing (AS) drives transcriptional responses and cellular adaptation to environmental stresses, its contributions in organ transplantation have not been appreciated. We have shown that carcinoembryonic antigen-related cell adhesion molecule (Ceacam1; CD66a), a transmembrane biliary glycoprotein expressed in epithelial, endothelial, and immune cells, determines donor liver transplant quality. Here, we studied how AS of Ceacam1 affects ischemia-reperfusion injury (IRI) in mouse and human livers. We found that the short cytoplasmic isoform Ceacam1-S increased during early acute and late resolution phases of warm IRI injury in mice. Transfection of Ceacam1-deficient mouse hepatocytes with adenoviral Ceacam1-S mitigated hypoxia-induced loss of cellular adhesion by repressing the Ask1/p-p38 cell death pathway. Nucleic acid-blocking morpholinos, designed to selectively induce Ceacam1-S, protected hepatocyte cultures against temperature-induced stress in vitro. Luciferase and chromatin immunoprecipitation assays identified direct binding of hypoxia-inducible factor-1α (Hif-1α) to the mouse polypyrimidine tract binding protein 1 (Ptbp1) promoter region. Dimethyloxalylglycine protected mouse livers from warm IR stress and hepatocellular damage by inhibiting prolyl hydroxylase domain-containing protein 1 and promoting AS of Ceacam1-S. Last, analysis of 46 human donor liver grafts revealed that CEACAM1-S positively correlated with pretransplant HIF1A expression. This also correlated with better transplant outcomes, including reduced TIMP1, total bilirubin, proinflammatory MCP1, CXCL10 cytokines, immune activation markers IL17A, and incidence of delayed complications from biliary anastomosis. This translational study identified mouse Hif-1α-controlled AS of Ceacam1, through transcriptional regulation of Ptbp1 promoter region, as a functional underpinning of hepatoprotection against IR stress and tissue damage in liver transplantation.


Subject(s)
Liver Diseases , Liver Transplantation , Humans , Mice , Animals , Alternative Splicing/genetics , Liver Transplantation/adverse effects , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Living Donors , Cell Adhesion Molecules/metabolism , Ischemia/complications
10.
Am J Transplant ; 23(12): 1858-1871, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37567451

ABSTRACT

Ischemia-reperfusion injury (IRI) during orthotopic liver transplantation (OLT) contributes to graft rejection and poor clinical outcomes. The disulfide form of high mobility group box 1 (diS-HMGB1), an intracellular protein released during OLT-IRI, induces pro-inflammatory macrophages. How diS-HMGB1 differentiates human monocytes into macrophages capable of activating adaptive immunity remains unknown. We investigated if diS-HMGB1 binds toll-like receptor (TLR) 4 and TLR9 to differentiate monocytes into pro-inflammatory macrophages that activate adaptive immunity and promote graft injury and dysfunction. Assessment of 106 clinical liver tissue and longitudinal blood samples revealed that OLT recipients were more likely to experience IRI and graft dysfunction with increased diS-HMGB1 released during reperfusion. Increased diS-HMGB1 concentration also correlated with TLR4/TLR9 activation, polarization of monocytes into pro-inflammatory macrophages, and production of anti-donor antibodies. In vitro, healthy volunteer monocytes stimulated with purified diS-HMGB1 had increased inflammatory cytokine secretion, antigen presentation machinery, and reactive oxygen species production. TLR4 inhibition primarily impeded cytokine/chemokine and costimulatory molecule programs, whereas TLR9 inhibition decreased HLA-DR and reactive oxygen species production. diS-HMGB1-polarized macrophages also showed increased capacity to present antigens and activate T memory cells. In murine OLT, diS-HMGB1 treatment potentiated ischemia-reperfusion-mediated hepatocellular injury, accompanied by increased serum alanine transaminase levels. This translational study identifies the diS-HMGB1/TLR4/TLR9 axis as potential therapeutic targets in OLT-IRI recipients.


Subject(s)
HMGB1 Protein , Liver Transplantation , Reperfusion Injury , Humans , Mice , Animals , Toll-Like Receptor 9/metabolism , HMGB1 Protein/metabolism , Toll-Like Receptor 4/metabolism , Reactive Oxygen Species/metabolism , Liver , Reperfusion Injury/metabolism , Macrophages , Cytokines/metabolism , Apoptosis , Mice, Inbred C57BL
11.
Gastroenterology ; 165(5): 1233-1248.e9, 2023 11.
Article in English | MEDLINE | ID: mdl-37479191

ABSTRACT

BACKGROUND & AIMS: Carcinoembryonic antigen-related cell adhesion molecule 1 (CC1) acts through homophilic and heterophilic interactions with T cell immunoglobulin domain and mucin domain-containing protein 3 (TIM-3), which regulates innate immune activation in orthotopic liver transplantation (OLT). We investigated whether cluster of differentiation (CD) 4+ T cell-dependent CC1-TIM-3 crosstalk may affect OLT outcomes in mice and humans. METHODS: Wild-type (WT) and CC1-deficient (CC1 knock-out [KO]) mouse livers were transplanted into WT, CC1KO, or T-cell TIM-3 transgenic (TIM-3Tg)/CC1KO double-mutant recipients. CD4+ T cells were adoptively transferred into T/B cell-deficient recombination activating gene 2 protein (Rag2) KO recipients, followed by OLT. The perioperative liver-associated CC1 increase was analyzed in 50 OLT patients. RESULTS: OLT injury in WT livers deteriorated in CC1KO compared with CC1-proficient (WT) recipients. The frequency of TIM-3+CD4+ T cells was higher in WT than CC1KO hosts. Reconstitution of Rag2KO mice with CC1KO-T cells increased nuclear factor (NF)-κB phosphorylation and OLT damage compared with recipients repopulated with WT T cells. T-cell TIM-3 enhancement in CC1KO recipients (WT â†’ TIM3Tg/CC1KO) suppressed NF-κB phosphorylation in Kupffer cells and mitigated OLT injury. However, TIM-3-mediated protection was lost by pharmacologic TIM-3 blockade or an absence of CC1 in the donor liver (CC1KO â†’ TIM-3Tg/CC1KO). The perioperative CC1 increase in human OLT reduced hepatocellular injury, early allograft dysfunction, and the cumulative rejection rate. CONCLUSIONS: This translational study identifies T cell-specific CC1 signaling as a therapeutic means to alleviate OLT injury by promoting T cell-intrinsic TIM-3, which in turn interacts with liver-associated CC1 to suppress NF-κB in Kupffer cells. By suppressing peritransplant liver damage, promoting T-cell homeostasis, and improving OLT outcomes, recipient CC1 signaling serves as a novel cytoprotective sentinel.


Subject(s)
Liver Diseases , Liver Transplantation , Humans , Mice , Animals , Hepatitis A Virus Cellular Receptor 2/genetics , Hepatitis A Virus Cellular Receptor 2/metabolism , T-Lymphocytes , NF-kappa B/metabolism , Living Donors , Liver/metabolism , Mice, Knockout , Transcription Factors/metabolism , Mice, Inbred C57BL
12.
Res Sq ; 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37461687

ABSTRACT

Sirtuin 1 (SIRT1) is a histone/protein deacetylase involved in cellular senescence, inflammation, and stress resistance. We previously reported that myeloid SIRT1 signaling regulates the inflamed liver's canonical pyroptosis cell death pathway. However, whether/how hepatocyte SIRT1 is engaged in programmed cell death in the cold-stressed liver remains uncertain. Here, we undertook translational studies in human and mouse orthotopic liver transplantation (OLT) to interrogate the significance of hepatocyte-specific SIRT1 signaling in cold-stored donor livers and liver grafts after reperfusion. In the clinical arm of sixty human OLT patients, hepatic SIRT1 levels in cold-preserved donor livers correlated with anti-apoptotic Bcl-2 expression. After reperfusion, improved OLT function was accompanied by hepatic SIRT1 levels negatively associated with cleaved caspase-3 expression. In the experimental arm, we compared FLOX-control with hepatocyte-specific SIRT1-KO livers after orthotopic transplantation into WT mouse recipients, parallel with primary murine hepatocyte cultures subjected to cold activation with/without knockdown of SIRT1, GSDME, and IL18Rß signaling. Hepatocyte SIRT1 deficiency upregulated apoptosis and GSDME-mediated programmed cell death, which in turn deteriorated the hepatocellular function and shortened OLT survival. Augmented GSDME processing, accompanied by increased secretion of IL18 by stressed hepatocytes, was prominent in SIRT1-deficient, cold-stored livers. Hepatocyte SIRT1 signaling regulated anti-apoptotic Bcl-2/XIAP proteins, suppressed cold stress-triggered apoptosis, and mitigated GSDME licensing to release IL18. Notably, while crosslinking IL18R depressed SIRT1 and Bcl-2/XIAP signaling in vitro, IL18 neutralization in vivo prevented hepatocellular damage and restored the anti-apoptotic phenotype in otherwise injury-prone SIRT1-deficient OLTs. In conclusion, this translational study identifies a novel hepatocyte SIRT1-IL18 signaling circuit as a therapeutic target in the mechanism underpinning hepatocyte death in human and mouse liver transplantation.

13.
Expert Rev Clin Immunol ; 19(10): 1205-1224, 2023.
Article in English | MEDLINE | ID: mdl-37489289

ABSTRACT

INTRODUCTION: Ischemia-reperfusion injury (IRI) involves a positive amplification feedback loop that stimulates innate immune-driven tissue damage associated with organ procurement from deceased donors and during transplantation surgery. As our appreciation of its basic immune mechanisms has improved in recent years, translating putative biomarkers into therapeutic interventions in clinical transplantation remains challenging. AREAS COVERED: This review presents advances in translational/clinical studies targeting immune responses to reactive oxygen species in IRI-stressed solid organ transplants, especially livers. Here we focus on novel concepts to rejuvenate suboptimal donor organs and improve transplant function using pharmacologic and machine perfusion (MP) strategies. Cellular damage induced by cold ischemia/warm reperfusion and the latest mechanistic insights into the microenvironment's role that leads to reperfusion-induced sterile inflammation is critically discussed. EXPERT OPINION: Efforts to improve clinical outcomes and increase the donor organ pool will depend on improving donor management and our better appreciation of the complex mechanisms encompassing organ IRI that govern the innate-adaptive immune interface triggered in the peritransplant period and subsequent allo-Ag challenge. Computational techniques and deep machine learning incorporating the vast cellular and molecular mechanisms will predict which peri-transplant signals and immune interactions are essential for improving access to the long-term function of life-saving transplants.


Subject(s)
Organ Transplantation , Reperfusion Injury , Humans , Liver , Reperfusion Injury/therapy , Inflammation
14.
J Clin Invest ; 133(3)2023 02 01.
Article in English | MEDLINE | ID: mdl-36719377

ABSTRACT

Neutrophils, the largest innate immune cell population in humans, are the primary proinflammatory sentinel in the ischemia-reperfusion injury (IRI) mechanism in orthotopic liver transplantation (OLT). Carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1, CC1, or CD66a) is essential in neutrophil activation and serves as a checkpoint regulator of innate immune-driven IRI cascade in OLT. Although CC1 alternative splicing generates two functionally distinct short and long cytoplasmic isoforms, their role in neutrophil activation remains unknown. Here, we undertook molecular and functional studies to interrogate the significance of neutrophil CC1 signaling in mouse and human OLT recipients. In the experimental arm, we employed a mouse OLT model to document that ablation of recipient-derived neutrophil CC1-long (CC1-L) isotype aggravated hepatic IRI by promoting neutrophil extracellular traps (NETs). Notably, by regulating the S1P-S1PR2/S1PR3 axis, neutrophil CC1-L determined susceptibility to NET formation via autophagy signaling. In the clinical arm, liver grafts from 55 transplant patients selectively enriched for neutrophil CC1-L showed relative resistance to ischemia-reperfusion (IR) stress/tissue damage, improved hepatocellular function, and clinical outcomes. In conclusion, despite neutrophils being considered a principal villain in peritransplant tissue injury, their CC1-L isoform may serve as a regulator of IR stress resistance/NETosis in human and mouse OLT recipients.


Subject(s)
Liver Transplantation , Reperfusion Injury , Animals , Humans , Mice , Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Liver/metabolism , Neutrophils/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Sphingosine-1-Phosphate Receptors/metabolism , Transcription Factors/metabolism
15.
Antioxid Redox Signal ; 38(7-9): 670-683, 2023 03.
Article in English | MEDLINE | ID: mdl-36070449

ABSTRACT

Aims: Innate and adaptive immune responses regulate hepatic ischemia-reperfusion injury (IRI) in orthotopic liver transplantation (OLT). While the mechanism of how nuclear factor erythroid 2-related factor 2 (NRF2) plays a role in liver IRI has been studied, the contribution of T cell-specific NRF2 in OLT remains unknown. In the current translational study, we investigated whether and how CD4+ T cell-specific NRF2 signaling affects liver transplant outcomes in mice and humans. Results: In the experimental arm, cold-stored (4°C/18 h) wild-type (WT) mouse livers transplanted to NRF2-deficient (NRF2-knockout [NRF2-KO]) recipients experienced greater hepatocellular damage than those in Nrf2-proficient (WT) counterparts, evidenced by Suzuki's histological scores, frequency of TdT-mediated dUTP nick end labeling (TUNEL)+ cells, and elevated serum aspartate aminotransferase/alanine aminotransferase (AST/ALT) levels. In vitro studies showed that NRF2 signaling suppressed CD4+ T cell differentiation to a proinflammatory phenotype (Th1, Th17) while promoting the regulatory (Foxp3+) T cell lineage. Furthermore, OLT injury deteriorated in immune-compromised RAG2-KO test recipients repopulated with CD4+ T cells from NRF2-KO compared with WT donor mice. In the clinical arm of 45 human liver transplant patients, the perioperative increase of NRF2 expression in donor livers negatively regulated innate and adaptive immune activation, resulting in reduced hepatocellular injury in NRF2-proficient OLT. Innovation and Conclusion: CD4+ T cell population expressing NRF2 attenuated ischemia and reperfusion (IR)-triggered hepatocellular damage in a clinically relevant mouse model of extended donor liver cold storage, followed by OLT, whereas the perioperative increase of NRF2 expression reduced hepatic injury in human liver transplant recipients. Thus, CD4+ T cell NRF2 may be a novel cytoprotective sentinel against IR stress in OLT recipients. Antioxid. Redox Signal. 38, 670-683.


Subject(s)
Liver Diseases , Liver Transplantation , Reperfusion Injury , Humans , Mice , Animals , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , T-Lymphocytes/metabolism , Living Donors , Liver/metabolism , Liver Diseases/metabolism , CD4-Positive T-Lymphocytes , Cell Differentiation , Reperfusion Injury/metabolism , Mice, Inbred C57BL
16.
JCI Insight ; 8(1)2023 01 10.
Article in English | MEDLINE | ID: mdl-36422999

ABSTRACT

Although glycogen synthase kinase ß (Gsk3ß) has been shown to regulate tissue inflammation, whether and how it regulates inflammation resolution versus inflammation activation is unclear. In a murine liver, partial warm ischemia/reperfusion injury (IRI) model, we found that Gsk3ß inhibitory phosphorylation increased at both the early-activation and late-resolution stages of the disease. Myeloid Gsk3ß deficiency not only alleviated liver injuries, it also facilitated the restoration of liver homeostasis. Depletion of Kupffer cells prior to the onset of liver ischemia diminished the differences between the WT and Gsk3ß-KO mice in the activation of liver IRI. However, the resolution of liver IRI remained accelerated in Gsk3ß-KO mice. In CD11b-DTR mice, Gsk3ß-deficient BM-derived macrophages (BMMs) facilitated the resolution of liver IRI as compared with WT cells. Furthermore, Gsk3ß deficiency promoted the reparative phenotype differentiation in vivo in liver-infiltrating macrophages and in vitro in BMMs. Gsk3 pharmacological inhibition promoted the resolution of liver IRI in WT, but not myeloid MerTK-deficient, mice. Thus, Gsk3ß regulates liver IRI at both activation and resolution stages of the disease. Gsk3 inactivation enhances the proresolving function of liver-infiltrating macrophages in an MerTK-dependent manner.


Subject(s)
Glycogen Synthase Kinase 3 , Reperfusion Injury , Animals , Mice , c-Mer Tyrosine Kinase/genetics , Glycogen Synthase Kinase 3 beta , Inflammation , Ischemia , Liver , Reperfusion Injury/genetics
17.
Front Transplant ; 2: 1176384, 2023.
Article in English | MEDLINE | ID: mdl-38993869

ABSTRACT

T-cell immunoglobulin and mucin (Tim)4 is expressed on APCs, including macrophages, as one of the main amplifiers in the mechanism of liver ischemia-reperfusion injury (IRI) following orthotopic liver transplantation (OLT). Though donor Tim4 selectively expressed on Kupffer cells serves as a checkpoint regulator of innate immune-driven IRI cascades, its role on cells outside the OLT remains unclear. To dissect the role of donor vs. recipient-specific Tim4 signaling in IR-induced stress and hepatocellular function, we employed a murine OLT model utilizing Tim4-knockout (KO) mice as either donor or recipient (WT → WT, WT → Tim4-KO, Tim4-KO → WT). In the experimental arm, disruption of donor Tim4 attenuated IRI-OLT damage, while recipient Tim4-null mutation aggravated hepatic IRI concomitant with disturbed lipid metabolism, enhanced endoplasmic reticulum stress, and activated pro-apoptotic signaling in the grafts. In the in vitro study, murine hepatocytes co-cultured with Tim4-null adipose tissue showed enhanced C/EBP homologous protein (CHOP) expression pattern and susceptibility to hepatocellular death accompanied by activated caspase cascade in response to TNF-α stimulation. In the clinical arm, liver grafts from forty-one transplant patients with enhanced TIM4 expression showed higher body mass index, augmented hepatic endoplasmic reticulum stress, enhanced pro-apoptotic markers, upregulated innate/adaptive immune responses, exacerbated hepatocellular damage, and inferior graft survival. In conclusion, although TIM4 is considered a principal villain in peri-transplant early tissue injury, recipient TIM4 signaling may serve as a savior of IR-triggered metabolic stress in mouse and human OLT recipients.

18.
Curr Opin Organ Transplant ; 27(5): 424-433, 2022 10 01.
Article in English | MEDLINE | ID: mdl-35857344

ABSTRACT

PURPOSE OF REVIEW: Ischemia-reperfusion injury (IRI) leading to allograft rejection in solid organ transplant recipients is a devastating event that compromises graft and patient survival. As our clinical knowledge regarding its definition and presentation has significantly improved over the last years, adequate biomarkers translating to important therapeutic intervention remains a challenge. This review will summarize recent findings in this area. RECENT FINDINGS: In the past 18 months, our understanding of organ transplantation IRI has improved. IRI involves a positive amplification feedback loop encompassing damaged cells at the graft site, the activity of redox-sensitive damage-associated molecular patterns, and local sequestration of recipient-derived monocytes, lymphocytes and polymorphonuclear leukocytes, like neutrophils, to sustain the immunological cascade and to enhance the destruction of the foreign tissue. Recent studies have identified critical components leading to IRI, including the oxidation state of high mobility group box 1, a classic danger signal, its role in the Toll-like receptor 4-interleukin (IL)-23-IL-17A signaling axis, and the role of neutrophils and CD321, a marker for transmigration of circulating leukocytes into the inflamed tissue. In addition, recent findings imply that the protective functions mediated by autophagy activation counterbalance the detrimental nucleotide-binding domain-like receptor family, pyrin domain containing 3 inflammasome pathway. Finally, clinical studies reveal the posttransplant variables associated with early allograft dysfunction and IRI. SUMMARY: The future challenge will be understanding how crosstalk at the molecular and cellular levels integrate prospectively to predict which peri-transplant signals are essential for long-term clinical outcomes.


Subject(s)
Organ Transplantation , Reperfusion Injury , Humans , Organ Transplantation/adverse effects , Reperfusion Injury/etiology , Reperfusion Injury/prevention & control , Signal Transduction
19.
Transplantation ; 106(8): 1565-1576, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35581683

ABSTRACT

BACKGROUND: Apoptosis contributes to the severity of ischemia-reperfusion injury (IRI), limiting the use of extended criteria donors in liver transplantation (LT). Machine perfusion has been proposed as a platform to administer specific therapies to improve graft function. Alternatively, the inhibition of genes associated with apoptosis during machine perfusion could alleviate IRI post-LT. The aim of the study was to investigate whether inhibition of an apoptosis-associated gene (FAS) using a small interfering RNA (siRNA) approach could alleviate IRI in a rat LT model. METHODS: In 2 different experimental protocols, FASsiRNA (500 µg) was administered to rat donors 2 h before organ procurement, followed by 22 h of static cold storage, (SCS) or was added to the perfusate during 1 h of ex situ hypothermic oxygenated perfusion (HOPE) to livers previously preserved for 4 h in SCS. RESULTS: Transaminase levels were significantly lower in the SCS-FASsiRNA group at 24 h post-LT. Proinflammatory cytokines (interleukin-2, C-X-C motif chemokine 10, tumor necrosis factor alpha, and interferon gamma) were significantly decreased in the SCS-FASsiRNA group, whereas the interleukin-10 anti-inflammatory cytokine was significantly increased in the HOPE-FASsiRNA group. Liver absorption of FASsiRNA after HOPE session was demonstrated by confocal microscopy; however, no statistically significant differences on the apoptotic index, necrosis levels, and FAS protein transcription between treated and untreated groups were observed. CONCLUSIONS: FAS inhibition through siRNA therapy decreases the severity of IRI after LT in a SCS protocol; however the association of siRNA therapy with a HOPE perfusion model is very challenging. Future studies using better designed siRNA compounds and appropriate doses are required to prove the siRNA therapy effectiveness during liver HOPE liver perfusion.


Subject(s)
Liver Transplantation , Reperfusion Injury , Tissue and Organ Procurement , Animals , Humans , Liver/pathology , Liver Transplantation/adverse effects , Liver Transplantation/methods , Organ Preservation/methods , Perfusion/methods , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Reperfusion Injury/genetics , Reperfusion Injury/prevention & control
20.
Sci Rep ; 12(1): 3945, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273230

ABSTRACT

Although Duchenne muscular dystrophy (DMD) primarily affects muscle tissues, the alterations to systemic metabolism manifested in DMD patients contribute to the severe phenotype of this fatal disorder. We propose that microRNA-378a (miR-378) alters carbohydrate and lipid metabolism in dystrophic mdx mice. In our study, we utilized double knockout animals which lacked both dystrophin and miR-378 (mdx/miR-378-/-). RNA sequencing of the liver identified 561 and 194 differentially expressed genes that distinguished mdx versus wild-type (WT) and mdx/miR-378-/- versus mdx counterparts, respectively. Bioinformatics analysis predicted, among others, carbohydrate metabolism disorder in dystrophic mice, as functionally proven by impaired glucose tolerance and insulin sensitivity. The lack of miR-378 in mdx animals mitigated those effects with a faster glucose clearance in a glucose tolerance test (GTT) and normalization of liver glycogen levels. The absence of miR-378 also restored the expression of genes regulating lipid homeostasis, such as Acly, Fasn, Gpam, Pnpla3, and Scd1. In conclusion, we report for the first time that miR-378 loss results in increased systemic metabolism of mdx mice. Together with our previous finding, demonstrating alleviation of the muscle-related symptoms of DMD, we propose that the inhibition of miR-378 may represent a new strategy to attenuate the multifaceted symptoms of DMD.


Subject(s)
MicroRNAs , Muscular Dystrophy, Duchenne , Acyltransferases , Animals , Disease Models, Animal , Dystrophin/genetics , Mice , Mice, Inbred mdx , MicroRNAs/genetics , MicroRNAs/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/genetics , Muscular Dystrophy, Duchenne/metabolism , Phenotype , Phospholipases A2, Calcium-Independent/genetics , Phospholipases A2, Calcium-Independent/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...