Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(25): 27113-27126, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38947814

ABSTRACT

The work is focused on the degradation, cytotoxicity, and antibacterial properties, of iron-based biomaterials with a bioactive coating layer. The foam and the compact iron samples were coated with a polyethylene glycol (PEG) polymer layer without and with gentamicin sulfate (PEG + Ge). The corrosion properties of coated and uncoated samples were studied using the degradation testing in Hanks' solution at 37 °C. The electrochemical and static immersion corrosion tests revealed that the PEG-coated samples corroded faster than samples with the bioactive PEG + Ge coating and uncoated samples. The foam samples corroded faster compared with the compact samples. To determine the cytotoxicity, cell viability was monitored in the presence of porous foam and compact iron samples. The antibacterial activity of the samples with PEG and PEG + Ge against Escherichia coli CCM 3954 and Staphylococcus aureus CCM 4223 strains was also tested. Tested PEG + Ge samples showed significant antibacterial activity against both bacterial strains. Therefore, the biodegradable iron-based materials with a bioactive coating could be a suitable successor to the metal materials studied thus far as well as the materials used in the field of medicine.

2.
ACS Omega ; 8(47): 44850-44860, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-38046307

ABSTRACT

Blood-contacting medical devices such as biodegradable metallic bone implant materials are expected to show excellent hemocompatibility both in vitro and in vivo. Different approaches are being studied and used to modify biomaterial surfaces for enhanced biocompatibility and hemocompatibility. However, the composition of degradable biomaterial must address several drawbacks at once. Iron-reinforced zinc material was used as a metallic substrate with improved mechanical properties when compared with those of pure zinc. Poly(lactic) acid (PLA) or polyethylenimine (PEI) was selected as a polymeric matrix for further doping with antibiotic ciprofloxacin (CPR) and marine-sourced polysaccharide fucoidan (FU), which are known for their antibacterial and potential anticoagulant properties, respectively. Radiofrequency air plasma was employed to induce metallic/polymer-coated surface activation before further modification with FU/CPR. Sample surface morphology and composition were studied and evaluated (contact angle measurements, AFM, SEM, and FT-IR) along with the hemolysis ratio and platelet adhesion test. Successful doping of the polymer layer by FU/CRP was confirmed. While PEI induced severe hemolysis over 12%, the PLA-coated samples exhibited even lower hemolysis (∼2%) than uncoated samples while the uncoated samples showed the lowest platelet adhesion. Moreover, gradual antibiotic release from PLA determined by the electrochemical methods using screen-printed carbon electrodes was observed after 24, 48, and 72 h, making the PLA-coated zinc-based material an attractive candidate for biodegradable material design.

3.
Materials (Basel) ; 15(5)2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35269143

ABSTRACT

Copper-containing iron-based materials have recently been recognized as potential biomaterials possessing antimicrobial ability. Since then, iron-copper systems have been prepared by different methods and investigated. This article is focused on PM materials made from composite powders. The powders, each particle of which consisted of an iron core and a copper shell, were prepared by electroplating. Test-pieces with copper contents of 0, 3.2, and 8 wt.% were fabricated by pressing and sintering from iron and composite powders. Some microstructural, mechanical, and corrosion characteristics of test-pieces were examined. Microstructures were composed of pores and iron grains with alloyed peripheral regions and copper-free cores. As the copper content in test-pieces was increased, their density and Young's modulus decreased, and macrohardness, corrosion potential and corrosion current density increased. Likely causes of density and Young's modulus reduction were higher porosity, low enough copper content, and compliant inclusions in stiff matrix. The increase in macrohardness was attributed to the precipitation hardening which prevailed over softening induced by pores. The increase in corrosion potential and corrosion current density was most likely due to the presence of more noble phase providing surfaces for a faster cathodic reaction.

4.
J Biomed Mater Res A ; 110(3): 659-671, 2022 03.
Article in English | MEDLINE | ID: mdl-34595831

ABSTRACT

Coating of the biodegradable metals represents an effective way of modification of their properties. Insufficient biological, mechanical, or degradation performance of pure metals may be enhanced when the proper type of organic polymer coating is used. In our previous work, the significant effect of the polyethyleneimine (PEI) coating not only on the rate but also on the type of corrosion was discovered. To bring a comprehensive overview of the Fe-PEI system performance, iron-based biodegradable scaffolds with polyethyleneimine coating were studied and their cytocompatibility and hemocompatibility, and mechanical properties were evaluated and discussed in this work. Electrochemical impedance spectroscopy (EIS) measurements were conducted for further study of material behavior. Biological analyses (MTS assay, fluorescent imaging, hemocompatibility tests) showed better cell proliferation on the surface of Fe-PEI samples but not sufficient overall cytocompatibility. Good anti-platelet adhesion properties but higher hemolysis when compared to the pure iron was also observed for the coated samples. Mechanical properties of the prepared Fe-PEI material were enhanced after coating. These findings suggest that the Fe-PEI may be an interesting potential biomaterial after further composition optimization resulting in lower cytotoxicity and better hemocompatibility.


Subject(s)
Iron , Polyethyleneimine , Alloys/chemistry , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Corrosion , Iron/chemistry , Iron/pharmacology , Materials Testing , Polyethyleneimine/pharmacology
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 249: 119322, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33373865

ABSTRACT

This work presents the NiAg nanocavity film for the detection of organic dyes by surface-enhanced Raman spectroscopy (SERS). Nanocavity films were prepared by colloidal lithography using 518-nm polystyrene spheres combined with the electrochemical deposition of Ni supporting layer and Ag nanoparticles homogeneous SERS-active layer. The theoretical study was modelled by finite-difference time-domain (FDTD) simulation of electromagnetic field enhancement near the nanostructured surface and experimentally proven by SERS measurement of selected organic dyes (rhodamine 6G, crystal violet, methylene blue, and malachite green oxalate) in micromolar concentration. Furthermore, the concentration dependence was investigated to prove the suitability of NiAg nanocavity films to detect ultra-low concentrations of samples. The detection limit was 1.3 × 10-12, 1.5 × 10-10, 1.4 × 10-10, 7.5 × 10-11 mol·dm-3, and the standard deviation was 20.1%, 13.8%, 16.7%, and 19.3% for R6G, CV, MB, and MGO, respectively. The analytical enhancement factor was 3.4 × 105 using R6G as a probe molecule. The principal component analysis (PCA) was performed to extract the differences in complex spectra of the dyes where the first and second PCs carry 42.43% and 31.39% of the sample variation, respectively. The achieved results demonstrated the suitability of AgNi nanocavity films for the SERS-based detection of organic dyes, with a potential in other sensing applications.

6.
Materials (Basel) ; 13(18)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957576

ABSTRACT

Advances in biomedicine and development of modern technologies in the last century have fostered the improvement in human longevity and well-being. This progress simultaneously initiated the need for novel biomaterials. Recently, degradable metallic biomaterials have attracted serious attention in scientific and clinical research owing to their utilization in some specific applications. This work investigates the effect of the polyethylene glycol (PEG) coating of open-cell iron and phosphorus/iron foams on their microstructure and corrosion properties. The addition of phosphorus causes a slight increase in pore size and the deposition of a polymer coating results in a smoothened surface and a moderate decrease in pore diameter. The PEG coating leads to an increase in corrosion rates in both foams and potentially a more desirable product.

7.
Materials (Basel) ; 13(1)2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31906430

ABSTRACT

Research in the field of biodegradable metallic scaffolds has advanced during the last decades. Resorbable implants based on iron have become an attractive alternative to the temporary devices made of inert metals. Overcoming an insufficient corrosion rate of pure iron, though, still remains a problem. In our work, we have prepared iron foams and coated them with three different concentrations of polyethyleneimine (PEI) to increase their corrosion rates. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy were used for characterization of the polymer coating. The corrosion behavior of the powder-metallurgically prepared samples was evaluated electrochemically using an anodic polarization method. A 12 weeks long in vitro degradation study in Hanks' solution at 37 °C was also performed. Surface morphology, corrosion behavior, and degradation rates of the open-cell foams were studied and discussed. The use of PEI coating led to an increase in the corrosion rates of the cellular material. The sample with the highest concentration of PEI film showed the most rapid corrosion in the environment of simulated body fluids.

8.
J Biomater Appl ; 30(7): 1060-70, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26553881

ABSTRACT

Biodegradable metallic implants are of significant importance in the replacement of bones or the repair of bone defects. Iron-phosphate-coated carbonyl iron powder (Fe/P) was prepared by the phosphating method. Moreover, Fe/P-Mn alloy was produced by sintering the Fe/P powder mixed with manganese powder. Bare carbonyl iron samples and the Fe/P and Fe/P-Mn sintered samples were evaluated for their microstructure, cytotoxicity, and hemocompatibility. The microstructure of the sintered samples was examined using an optical microscope and scanning electron microscopic analysis. Corrosion behavior was evaluated by potentiodynamic polarization in Hank's solution. The in vitro biocompatibilities were investigated by cytotoxicity and hemolysis tests. The results obtained demonstrate that the addition of Mn resulted in higher surface inhomogeneity, porosity and roughness as well as in increased cytotoxicity. The phosphate coating has a moderately negative effect on the cytotoxicity. The corrosion rates determined from Tafel diagrams were ordered in the following sequence: Fe/P-Mn, Fe, Fe/P from high to low. The hemocompatibility of experimental samples was ordered in the following sequence: Fe/P, Fe/P-Mn, Fe from high to low. All samples were found to be hemocompatible.


Subject(s)
Biocompatible Materials/chemistry , Iron/chemistry , Absorbable Implants , Alloys/chemistry , Animals , Bone and Bones/metabolism , Carbon/chemistry , Corrosion , Culture Media/chemistry , Fibroblasts/cytology , Hemolysis , Ions , Manganese/chemistry , Materials Testing , Mice , Microscopy , Microscopy, Electron, Scanning , Phosphates/chemistry , Phosphorus/chemistry , Powders/chemistry , Pressure , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...