Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 10(3)2021 02 28.
Article in English | MEDLINE | ID: mdl-33671083

ABSTRACT

The poor prognosis of locally advanced and metastatic head and neck squamous cell carcinoma (HNSCC) is primarily mediated by the functional properties of cancer stem cells (CSCs) and resistance to chemoradiotherapy. We investigated whether the aldehyde dehydrogenase (ALDH) inhibitor disulfiram (DSF) can enhance the sensitivity of therapy. Cell viability was assessed by the 1-(4,5-dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT) and apoptosis assays, and the cell cycle and reactive oxygen species (ROS) levels were evaluated by fluorescence-activated cell sorting (FACS). The radio-sensitizing effect was measured by a colony formation assay. The synergistic effects were calculated by combination index (CI) analyses. The DSF and DSF/Cu2+ inhibited the cell proliferation (inhibitory concentration 50 (IC50) of DSF and DSF/Cu2+ were 13.96 µM and 0.24 µM). DSF and cisplatin displayed a synergistic effect (CI values were < 1). DSF or DSF/Cu2+ abolished the cisplatin-induced G2/M arrest (from 52.9% to 40.7% and 41.1%), and combining irradiation (IR) with DSF or DSF/Cu2+ reduced the colony formation and attenuated the G2/M arrest (from 53.6% to 40.2% and 41.9%). The combination of cisplatin, DSF or DSF/Cu2+, and IR enhanced the radio-chemo sensitivity by inducing apoptosis (42.04% and 32.21%) and ROS activity (46.3% and 37.4%). DSF and DSF/Cu2+ enhanced the sensitivity of HNSCC to cisplatin and IR. Confirming the initial data from patient-derived tumor xenograft (PDX) supported a strong rationale to repurpose DSF as a radio-chemosensitizer and to assess its therapeutic potential in a clinical setting.


Subject(s)
Acetaldehyde Dehydrogenase Inhibitors/therapeutic use , Disulfiram/therapeutic use , Head and Neck Neoplasms/drug therapy , Squamous Cell Carcinoma of Head and Neck/drug therapy , Acetaldehyde Dehydrogenase Inhibitors/pharmacology , Animals , Apoptosis , Cell Line, Tumor , Disulfiram/pharmacology , Heterografts , Humans , Mice
2.
J Biol Chem ; 278(13): 10973-82, 2003 Mar 28.
Article in English | MEDLINE | ID: mdl-12525505

ABSTRACT

The LOV2 domain of Avena sativa phototropin and its C450A mutant were expressed as recombinant fusion proteins and were examined by optical spectroscopy, electron paramagnetic resonance, and electron-nuclear double resonance. Upon irradiation (420-480 nm), the LOV2 C450A mutant protein gave an optical absorption spectrum characteristic of a flavin radical even in the absence of exogenous electron donors, thus demonstrating that the flavin mononucleotide (FMN) cofactor in its photogenerated triplet state is a potent oxidant for redox-active amino acid residues within the LOV2 domain. The FMN radical in the LOV2 C450A mutant is N(5)-protonated, suggesting that the local pH close to the FMN is acidic enough so that the cysteine residue in the wild-type protein is likely to be also protonated. An electron paramagnetic resonance analysis of the photogenerated FMN radical gave information on the geometrical and electronic structure and the environment of the FMN cofactor. The experimentally determined hyperfine couplings of the FMN radical point to a highly restricted delocalization of the unpaired electron spin in the isoalloxazine moiety. In the light of these results a possible radical-pair mechanism for the formation of the FMN-C(4a)-cysteinyl adduct in LOV domains is discussed.


Subject(s)
Avena/physiology , Drosophila Proteins , Eye Proteins , Flavins/biosynthesis , Flavoproteins/chemistry , Light , Photoreceptor Cells, Invertebrate , Cryptochromes , Electron Spin Resonance Spectroscopy , Flavins/chemistry , Flavoproteins/genetics , Molecular Sequence Data , Plasmids , Receptors, G-Protein-Coupled , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...