Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 23478, 2021 12 06.
Article in English | MEDLINE | ID: mdl-34873189

ABSTRACT

Light pollution is an environmental stressor of global extent that is growing exponentially in area and intensity. Artificial skyglow, a form of light pollution with large range, is hypothesized to have environmental impact at ecosystem level. However, testing the impact of skyglow at large scales and in a controlled fashion under in situ conditions has remained elusive so far. Here we present the first experimental setup to mimic skyglow at ecosystem level outdoors in an aquatic environment. Spatially diffuse and homogeneous surface illumination that is adjustable between 0.01 and 10 lx, resembling rural to urban skyglow levels, was achieved with white light-emitting diodes at a large-scale lake enclosure facility. The illumination system was enabled by optical modeling with Monte-Carlo raytracing and validated by measurements. Our method can be adapted to other outdoor and indoor skyglow experiments, urgently needed to understand the impact of skyglow on ecosystems.

2.
Conserv Physiol ; 9(1): coaa124, 2021.
Article in English | MEDLINE | ID: mdl-33659060

ABSTRACT

Artificial light at night (ALAN) can affect the physiology and behavior of animals because it alters the natural rhythm of light and darkness. Thyroid hormones (TH) are partially regulated by the light information of photoperiod and are involved in metabolic adjustments to daily and seasonal changes in the environment, such as larval and juvenile development, somatic growth and reproduction. ALAN can change photoperiodic information and might thereby lead to changes in thyroid metabolism, but so far research on this topic is scarce. Therefore, we tested in two different experiments the effects of nocturnal illumination at a wide range of light intensities on TH in plasma of Eurasian perch (Perca fluviatilis). Total 3,3',5-triiodo-L-thyronine (T3) was significantly affected by ALAN and reduced at the highest tested intensity of 100 lx after only two weeks of exposure. Although total L-thyroxine (T4) was not significantly affected, the ratio of T3 to T4 tended to slightly decrease at 100 lx. In a second low-light experiment ALAN did not have clear effects on T3, T4 or the ratio of T3 to T4 at intensities between 0.01 lx and 1 lx. The results show first signs of endocrine disruption in thyroid metabolism after a relatively short ALAN exposure of two weeks under high-intensity streetlight conditions. Misbalanced thyroidal status can have serious implications for metabolic rates as well as developmental and reproductive processes.

3.
J Fish Biol ; 99(1): 118-130, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33587288

ABSTRACT

Artificial light at night (ALAN) can disrupt biological rhythms of fish and other vertebrates by changing the light information of the nocturnal environment. Disrupted biorhythms can impair the immune system of vertebrates as it has been shown for conditions with continuous illumination or long-day photoperiod in many vertebrates, including fish. Nonetheless, this has not been shown so far for typical ALAN scenarios with high light intensities during day and low light intensities at night. Therefore, in this study, proxies for the innate immune system and oxidative stress as well as body indices of Eurasian perch Perca fluviatilis were measured under a wide range of intensities of nocturnal illumination. The authors found no changes in parameters of the innate immune system and no significant changes in proxies for oxidative stress after 2-week exposures to nocturnal illuminance ranging from 0.01 lx to 1 lx in one experiment or from 1 lx to 100 lx in a second experiment. A decrease in the hepato-somatic index at the highest tested light intensity of 100 lx compared to the dark control was the only significant difference in all parameters among treatments. After 2 weeks of exposure, ALAN does not seem to seriously challenge the innate immune system and seems to cause less oxidative stress than expected. The results of this study contradict the findings from other studies applying continuous illumination or long-day photoperiod and highlight the importance of further research in this field. Because ALAN represents a sustained modulation of the environment that may have cumulative effects over time, long-term studies are required for a better understanding of how ALAN modulates the health of fish.


Subject(s)
Perches , Animals , Immunity, Innate , Light , Oxidative Stress , Photoperiod
4.
Environ Pollut ; 262: 114324, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32179225

ABSTRACT

Artificial light at night (ALAN) changes the natural rhythm of light and darkness and can impair the biorhythms of animals, for example the nocturnal melatonin production of vertebrates, which serves as a proxy for daily physiological rhythms. Freshwater fish are exposed to ALAN in large urban and suburban areas in the form of direct light or in the form of skyglow, a diffuse brightening of the night sky through the scattered light reflected by clouds, atmospheric molecules, and particles in the air. However, investigations on the sensitivity of melatonin production of fish towards low intensities of ALAN in the range of typical skyglow are rare. Therefore, we exposed Eurasian perch (Perca fluviatilis) to nocturnal illumination levels of 0.01 lx, 0.1 lx and 1 lx and a control group with dark nights and daylight intensities of 2900 lx in all groups. After ten days of exposure to the experimental conditions, tank water was non-invasively sampled every 3 h over a 24 h period and melatonin was measured by ELISA. Melatonin was gradually reduced in all treatments with increasing intensity of ALAN whereas rhythmicity was maintained in all treatment groups although at 1 lx not all evaluated parameters confirmed rhythmicity. These results show a high sensitivity of Eurasian perch towards ALAN indicating that low light intensities of 0.01 lx and 0.1 lx as they occur in urban and suburban areas in the form of skyglow can affect the physiology of Eurasian perch. Furthermore, we highlight how this may impact perch in their sensitivity towards lunar rhythms and the role of skyglow for biorhythms of temperate freshwater fish.


Subject(s)
Melatonin , Perches , Animals , Circadian Rhythm
SELECTION OF CITATIONS
SEARCH DETAIL
...