Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 14(10): 12885-12894, 2020 Oct 27.
Article in English | MEDLINE | ID: mdl-32966061

ABSTRACT

Chemical vapor deposition is a widely used material deposition technique. It commonly provides a uniform material flux to the substrate to cause uniform thin film growth. However, the ability to precisely adjust the local deposition rate would be highly preferable. This communication reports on a chemical vapor deposition method performed in a localized and programmable fashion by introducing an electrically charged and guided molecular flux. This allows for local adjustments of the deposition rate and three-dimensional shape by controlling the electric fields. Specifically, the precursor molecules are charged and then guided by arrays of electrodynamic funnels, which are created by a patterned dielectric layer, to predetermined deposition locations with a minimal spot size of 250 nm. Furthermore, nearest neighbor coupling is reported as a shaping method to cause the deposition of three-dimensional nanostructures. Additionally, the integration of individually addressable domain electrodes offers programmable charge dissipation to achieve an ON/OFF control. The described method is applicable to a wide variety of materials and precursors. Here, the localized and programmable deposition of three-dimensional copper oxide, chromium oxide, zinc oxide, and carbon nanowires is demonstrated.

2.
Sci Rep ; 10(1): 11817, 2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32678269

ABSTRACT

Sodium ion batteries are considered as one of the most promising energy storage devices as lithium ion batteries due to the natural abundance of sodium. TiO2 is very popular as anode materials for both lithium and sodium ion batteries because of the nontoxicity, safety and great stabilities. However, the low electronic conductivities and inferior sodium ion diffusion make it becoming a great challenge to develop advanced TiO2 anodes. Doping heteroatoms and incorporation of defects are believed to be great ways to improve the electrochemical performance of TiO2 anodes. In this work, commercial TiO2 (P25) nanoparticles was modified by hydrogen and nitrogen high-power plasma resulting in a disordered surface layer formation and nitrogen doping as well. The electrochemical performances of the samples as anode materials for sodium ion batteries was measured and the results indicated that after the hydrogen-nitrogen plasma treatment, H-N-TiO2 electrode shows a 43.5% of capacity higher than the P-TiO2 after 400 cycles long-term discharge/charge process, and the samples show a good long cycling stability as well, the Coulombic efficiencies of all samples are nearly 99% after 50 cycles which could be sustained to the end of long cycling. In addition, hydrogen-nitrogen plasma treated TiO2 electrode reached the stable high Coulombic efficiency earlier than the pristine material. High resolution TEM images and XPS results indicate that there is a disordered surface layer formed after the plasma treatment, by which defects (oxygen vacancies) and N-doping are also introduced into the crystalline structure. All these contribute to the enhancement of the electrochemical performance.

3.
Nanotechnology ; 30(10): 104002, 2019 Mar 08.
Article in English | MEDLINE | ID: mdl-30523951

ABSTRACT

Dilute nitride III-V nanowires (NWs) possess great potential as building blocks in future optoelectronical and electrochemical devices. Here, we provide evidence for the growth of GaP/GaPN core-shell NWs via metalorganic vapor phase epitaxy, both on GaP(111)B and on GaP/Si(111) hetero-substrates. The NW morphology meets the common needs for use in applications, i.e. they are straight and vertically oriented to the substrate as well as homogeneous in length. Moreover, no parasitical island growth is observed. Nitrogen was found to be incorporated on group V sites as determined from transmission electron microscopy (TEM) and Raman spectroscopy. Together with the incorporation of N, the NWs exhibit strong photoluminescence in the visible range, which we attribute to radiative recombination at N-related deep states. Independently of the N incorporation, a peculiar facet formation was found, with {110} facets at the top and {112} at the bottom of the NWs. TEM reveals that this phenomenon is related to different stacking fault densities within the zinc blende structure, which lead to different effective surface energies for the bottom and the top of the NWs.

4.
ACS Appl Mater Interfaces ; 9(7): 6273-6281, 2017 Feb 22.
Article in English | MEDLINE | ID: mdl-28145115

ABSTRACT

Nanoporous gold nanoparticles (NPG-NPs) with controlled particle size and pore size are fabricated via a combination of solid-state dewetting and a subsequent dealloying process. Because of the combined effects of size and porosity, the NPG-NPs exhibit greater plasmonic tunability and significantly higher local field enhancement as compared to solid NPs. The effects of the nanoscale porosity and pore size on the optical extinction are investigated for the NPG-NPs with different particle sizes experimentally and theoretically. The influences of both porosity and pore size on the plasmonic properties are very complicated and clearly different for small particles with dominated dipole mode and large particles with dominated quadrupole mode. Au/Al2O3 hybrid porous NPs with controlled porosity and composition ratio are fabricated through plasma-enhanced atomic layer deposition of Al2O3 into the porous structure. In the Au/Al2O3 hybrid porous NPs, both Au and Al2O3 components are bicontinuously percolated over the entire structure. A further red shift of the plasmon peak is observed in the hybrid NPs due to the change of the environmental refractive index. The high tunability of the plasmonic resonances in the NPG-NPs and the hybrid porous NPs can be very useful for many applications in sensing biological and organic molecules.

5.
J Electron Microsc (Tokyo) ; 53(3): 237-44, 2004.
Article in English | MEDLINE | ID: mdl-15332650

ABSTRACT

A method of higher-order Laue zone line position measurement in convergent-beam electron diffraction (CBED) is proposed based on Hough transformation. A thorough analysis of the errors introduced by this measurement procedure is performed and their influence on the accuracy of lattice parameter determination is estimated. A criterion is derived which enables the accuracy to be predicted before experimental measurements are made and, thus, allows the selection of the best CBED geometry for parameter measurement.


Subject(s)
Algorithms , Image Processing, Computer-Assisted , Microscopy, Electron, Scanning/methods , Crystallography
SELECTION OF CITATIONS
SEARCH DETAIL
...