Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
2.
Sci Rep ; 10(1): 19964, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33203944

ABSTRACT

Reduced cardiac sodium (Na+) channel current (INa) resulting from the loss-of-function of Na+ channel is a major cause of lethal arrhythmias in Brugada syndrome (BrS). Inspired by previous experimental studies which showed that in heart diseases INa was reduced along with expression changes in Na+ channel within myocytes, we hypothesized that the local decrease in INa caused by the alteration in Na+ channel expression in myocytes leads to the occurrence of phase-2 reentry, the major triggering mechanism of lethal arrhythmias in BrS. We constructed in silico human ventricular myocardial strand and ring models, and examined whether the Na+ channel expression changes in each myocyte cause the phase-2 reentry in BrS. Reducing Na+ channel expression in the lateral membrane of each myocyte caused not only the notch-and-dome but also loss-of-dome type action potentials and slowed conduction, both of which are typically observed in BrS patients. Furthermore, the selective reduction in Na+ channels on the lateral membrane of each myocyte together with spatial tissue heterogeneity of Na+ channel expression caused the phase-2 reentry and phase-2 reentry-mediated reentrant arrhythmias. Our data suggest that the BrS phenotype is strongly influenced by expression abnormalities as well as genetic abnormalities of Na+ channels.


Subject(s)
Arrhythmias, Cardiac/metabolism , Brugada Syndrome/metabolism , Myocytes, Cardiac/metabolism , Sodium/metabolism , Action Potentials/physiology , Animals , Electrocardiography/methods , Heart Ventricles/metabolism , Humans , NAV1.5 Voltage-Gated Sodium Channel/metabolism
3.
J Pharmacol Sci ; 140(4): 325-330, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31279582

ABSTRACT

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are a valuable tool to characterize the pharmacology and toxic effects of drugs on heart cells. In particular, hiPSC-CMs can be used to identify drugs that generate arrhythmias. However, it is unclear whether the expression of genes related to generation of CM action potentials differs between hiPSC-CM cell lines and the mature human heart. To address this, we obtained accurate gene expression profiles of commercially available hiPSC-CM cell lines with quantitative real time RT-PCR analysis. Expression analysis of ten cardiac proteins important for generation of action potentials and three cardiac proteins important for muscle contractility was performed using GAPDH for normalization. Comparison revealed large variations in expression levels among hiPSC-CM cell lines and between hiPSC-CMs and normal human heart. In general, gene expression in hiPSC-CM cell lines was more similar to an immature, stem-like cell than a mature cardiomyocyte from human heart samples. These results provide quantitative information about differences in gene expression between hiPSC-CM cell lines, essential for interpreting pharmacology experiments. Our approach can be used as an experimental guideline for future research on gene expression in hiPSC-CMs.


Subject(s)
Action Potentials/genetics , Gene Expression/genetics , Induced Pluripotent Stem Cells/physiology , Myocytes, Cardiac/physiology , Adult , Arrhythmias, Cardiac/genetics , Cell Line , Heart/physiology , Humans , Male , Muscle Contraction/genetics
4.
J Physiol Sci ; 69(3): 433-451, 2019 May.
Article in English | MEDLINE | ID: mdl-30868372

ABSTRACT

An organism stems from assemblies of a variety of cells and proteins. This complex system serves as a unit, and it exhibits highly sophisticated functions in response to exogenous stimuli that change over time. The complete sequencing of the entire human genome has allowed researchers to address the enigmas of life and disease at the gene- or molecular-based level. The consequence of such studies is the rapid accumulation of a multitude of data at multiple levels, ranging from molecules to the whole body, that has necessitated the development of entirely new concepts, tools, and methodologies to analyze and integrate these data. This necessity has given birth to systems biology, an advanced theoretical and practical research framework that has totally changed the directions of not only basic life science but also medicine. During the symposium of the 95th Annual Meeting of The Physiological Society of Japan 2018, five researchers reported on their respective studies on systems biology. The topics included reactions of drugs, ion-transport architecture in an epithelial system, multi-omics in renal disease, cardiac electrophysiological systems, and a software platform for computer simulation. In this review article these authors have summarized recent achievements in the field and discuss next-generation studies on health and disease.


Subject(s)
Disease/genetics , Systems Biology/methods , Animals , Computational Biology/methods , Computer Simulation , Humans , Japan , Research , Software
5.
Circulation ; 139(18): 2157-2169, 2019 04 30.
Article in English | MEDLINE | ID: mdl-30764634

ABSTRACT

BACKGROUND: Bradyarrhythmia is a common clinical manifestation. Although the majority of cases are acquired, genetic analysis of families with bradyarrhythmia has identified a growing number of causative gene mutations. Because the only ultimate treatment for symptomatic bradyarrhythmia has been invasive surgical implantation of a pacemaker, the discovery of novel therapeutic molecular targets is necessary to improve prognosis and quality of life. METHODS: We investigated a family containing 7 individuals with autosomal dominant bradyarrhythmias of sinus node dysfunction, atrial fibrillation with slow ventricular response, and atrioventricular block. To identify the causative mutation, we conducted the family-based whole exome sequencing and genome-wide linkage analysis. We characterized the mutation-related mechanisms based on the pathophysiology in vitro. After generating a transgenic animal model to confirm the human phenotypes of bradyarrhythmia, we also evaluated the efficacy of a newly identified molecular-targeted compound to upregulate heart rate in bradyarrhythmias by using the animal model. RESULTS: We identified one heterozygous mutation, KCNJ3 c.247A>C, p.N83H, as a novel cause of hereditary bradyarrhythmias in this family. KCNJ3 encodes the inwardly rectifying potassium channel Kir3.1, which combines with Kir3.4 (encoded by KCNJ5) to form the acetylcholine-activated potassium channel ( IKACh channel) with specific expression in the atrium. An additional study using a genome cohort of 2185 patients with sporadic atrial fibrillation revealed another 5 rare mutations in KCNJ3 and KCNJ5, suggesting the relevance of both genes to these arrhythmias. Cellular electrophysiological studies revealed that the KCNJ3 p.N83H mutation caused a gain of IKACh channel function by increasing the basal current, even in the absence of m2 muscarinic receptor stimulation. We generated transgenic zebrafish expressing mutant human KCNJ3 in the atrium specifically. It is interesting to note that the selective IKACh channel blocker NIP-151 repressed the increased current and improved bradyarrhythmia phenotypes in the mutant zebrafish. CONCLUSIONS: The IKACh channel is associated with the pathophysiology of bradyarrhythmia and atrial fibrillation, and the mutant IKACh channel ( KCNJ3 p.N83H) can be effectively inhibited by NIP-151, a selective IKACh channel blocker. Thus, the IKACh channel might be considered to be a suitable pharmacological target for patients who have bradyarrhythmia with a gain-of-function mutation in the IKACh channel.


Subject(s)
Atrial Fibrillation , Atrioventricular Block , Bradycardia , G Protein-Coupled Inwardly-Rectifying Potassium Channels , Genetic Diseases, Inborn , Mutation, Missense , Amino Acid Substitution , Animals , Animals, Genetically Modified , Atrial Fibrillation/genetics , Atrial Fibrillation/metabolism , Atrial Fibrillation/pathology , Atrial Fibrillation/physiopathology , Atrioventricular Block/genetics , Atrioventricular Block/metabolism , Atrioventricular Block/pathology , Atrioventricular Block/physiopathology , Benzopyrans/pharmacology , Bradycardia/genetics , Bradycardia/metabolism , Bradycardia/pathology , Bradycardia/physiopathology , Electrophysiologic Techniques, Cardiac , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Genetic Diseases, Inborn/physiopathology , Humans , Male , Xenopus laevis , Zebrafish
6.
J Gen Physiol ; 151(2): 214-230, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30674563

ABSTRACT

Drug-induced block of the cardiac rapid delayed rectifying potassium current (I Kr), carried by the human ether-a-go-go-related gene (hERG) channel, is the most common cause of acquired long QT syndrome. Indeed, some, but not all, drugs that block hERG channels cause fatal cardiac arrhythmias. However, there is no clear method to distinguish between drugs that cause deadly arrhythmias and those that are clinically safe. Here we propose a mechanism that could explain why certain clinically used hERG blockers are less proarrhythmic than others. We demonstrate that several drugs that block hERG channels, but have favorable cardiac safety profiles, also evoke another effect; they facilitate the hERG current amplitude in response to low-voltage depolarization. To investigate how hERG facilitation impacts cardiac safety, we develop computational models of I Kr block with and without this facilitation. We constrain the models using data from voltage clamp recordings of hERG block and facilitation by nifekalant, a safe class III antiarrhythmic agent. Human ventricular action potential simulations demonstrate the ability of nifekalant to suppress ectopic excitations, with or without facilitation. Without facilitation, excessive I Kr block evokes early afterdepolarizations, which cause lethal arrhythmias. When facilitation is introduced, early afterdepolarizations are prevented at the same degree of block. Facilitation appears to prevent early afterdepolarizations by increasing I Kr during the repolarization phase of action potentials. We empirically test this prediction in isolated rabbit ventricular myocytes and find that action potential prolongation with nifekalant is less likely to induce early afterdepolarization than action potential prolongation with dofetilide, a hERG channel blocker that does not induce facilitation. Our data suggest that hERG channel blockers that induce facilitation increase the repolarization reserve of cardiac myocytes, rendering them less likely to trigger lethal ventricular arrhythmias.


Subject(s)
Action Potentials , Anti-Arrhythmia Agents/pharmacology , ERG1 Potassium Channel/metabolism , Myocytes, Cardiac/drug effects , Potassium Channel Blockers/pharmacology , Animals , Cells, Cultured , ERG1 Potassium Channel/antagonists & inhibitors , HEK293 Cells , Humans , Myocytes, Cardiac/physiology , Phenethylamines/pharmacology , Pyrimidinones/pharmacology , Rabbits , Sulfonamides/pharmacology , Xenopus
7.
Mol Pharmacol ; 93(6): 592-600, 2018 06.
Article in English | MEDLINE | ID: mdl-29650538

ABSTRACT

Many compounds inhibit tetrameric and pseudo-tetrameric cation channels by associating with the central cavity located in the middle of the membrane plane. They traverse the ion conduction pathway from the intracellular side and through access to the cavity. Previously, we reported that the bacteriostatic agent, proflavine, preferentially blocked a subset of inward rectifier K+ (Kir) channels. However, the development of the inhibition of Kir1.1 by the compound was obviously different from that operating in Kir3.2 as a pore blocker. To gain mechanistic insights into the compound-channel interaction, we analyzed its chemical specificity, subunit selectivity, and voltage dependency using 13 different combinations of Kir-channel family members and 11 proflavine derivatives. The Kir-channel family members were classified into three groups: 1) Kir2.2, Kir3.x, Kir4.2, and Kir6.2Δ36, which exhibited Kir3.2-type inhibition (slow onset and recovery, irreversible, and voltage-dependent blockage); 2) Kir1.1 and Kir4.1/Kir5.1 (prompt onset and recovery, reversible, and voltage-independent blockage); and 3) Kir2.1, Kir2.3, Kir4.1, and Kir7.1 (no response). The degree of current inhibition depended on the combination of compounds and channels. Chimera between proflavine-sensitive Kir1.1 and -insensitive Kir4.1 revealed that the extracellular portion of Kir1.1 is crucial for the recognition of the proflavine derivative acrinol. In conclusion, preferential blockage of Kir-channel family members by proflavine derivatives is based on multiple modes of action. This raises the possibility of designing subunit-specific inhibitors.


Subject(s)
Potassium Channel Blockers/pharmacology , Potassium Channels, Inwardly Rectifying/antagonists & inhibitors , Potassium Channels, Inwardly Rectifying/metabolism , Proflavine/pharmacology , Animals , Humans , Mice , Rats
10.
NPJ Syst Biol Appl ; 3: 24, 2017.
Article in English | MEDLINE | ID: mdl-28861279

ABSTRACT

The cochlear lateral wall-an epithelial-like tissue comprising inner and outer layers-maintains +80 mV in endolymph. This endocochlear potential supports hearing and represents the sum of all membrane potentials across apical and basolateral surfaces of both layers. The apical surfaces are governed by K+ equilibrium potentials. Underlying extracellular and intracellular [K+] is likely controlled by the "circulation current," which crosses the two layers and unidirectionally flows throughout the cochlea. This idea was conceptually reinforced by our computational model integrating ion channels and transporters; however, contribution of the outer layer's basolateral surface remains unclear. Recent experiments showed that this basolateral surface transports K+ using Na+, K+-ATPases and an unusual characteristic of greater permeability to Na+ than to other ions. To determine whether and how these machineries are involved in the circulation current, we used an in silico approach. In our updated model, the outer layer's basolateral surface was provided with only Na+, K+-ATPases, Na+ conductance, and leak conductance. Under normal conditions, the circulation current was assumed to consist of K+ and be driven predominantly by Na+, K+-ATPases. The model replicated the experimentally measured electrochemical properties in all compartments of the lateral wall, and endocochlear potential, under normal conditions and during blocking of Na+, K+-ATPases. Therefore, the circulation current across the outer layer's basolateral surface depends primarily on the three ion transport mechanisms. During the blockage, the reduced circulation current partially consisted of transiently evoked Na+ flow via the two conductances. This work defines the comprehensive system driving the circulation current.

11.
Sci Rep ; 7(1): 10771, 2017 09 07.
Article in English | MEDLINE | ID: mdl-28883639

ABSTRACT

Some cardiovascular and non-cardiovascular drugs frequently cause excessive prolongation of the cardiac action potential (AP) and lead to the development of early afterdepolarisations (EADs), which trigger lethal ventricular arrhythmias. Combining computer simulations in APs with numerical calculations based on dynamical system theory, we investigated stability changes of APs observed in a paced human ventricular myocyte model by decreasing and/or increasing the rapid (I Kr) and slow (I Ks) components of delayed rectifying K+ current. Upon reducing I Kr, the APs without EADs (no-EAD response) showed gradual prolongation of AP duration (APD), and were annihilated without AP configuration changes due to the occurrence of saddle-node bifurcations. This annihilation caused a transition to an AP with EADs as a new stable steady state. Furthermore, reducing repolarisation currents (repolarisation reserve attenuation) evoked multi-stable states consisting of APs with different APDs, and caused multiple hysteretic dynamics. Depending on initial ion circumstances within ventricular myocytes, these multi-stable AP states might increase the local/global heterogeneity of AP repolarisations in the ventricle. Thus, the EAD-induced arrhythmias with repolarisation reserve attenuation might be attributed to the APD variability caused by multi-stability in cardiac AP dynamics.


Subject(s)
Arrhythmias, Cardiac/physiopathology , Myocytes, Cardiac/physiology , Action Potentials , Computer Simulation , Heart Ventricles/cytology , Humans , Models, Cardiovascular
12.
Sci Rep ; 7(1): 9760, 2017 08 29.
Article in English | MEDLINE | ID: mdl-28852171

ABSTRACT

Numerical model-based simulations provide important insights into ion channel gating when experimental limitations exist. Here, a novel strategy combining numerical simulations with patch clamp experiments was used to investigate the net positive charges in the putative transmembrane segment 4 (S4) of the atypical, positively-shifted voltage-dependence of polycystic kidney disease 2-like 1 (PKD2L1) channel. Charge-neutralising mutations (K452Q, K455Q and K461Q) in S4 reduced gating charges, positively shifted the Boltzmann-type activation curve [i.e., open probability (P open)-V curve] and altered the time-courses of activation/deactivation of PKD2L1, indicating that this region constitutes part of a voltage sensor. Numerical reconstruction of wild-type (WT) and mutant PKD2L1-mediated currents necessitated, besides their voltage-dependent gating parameters, a scaling factor that describes the voltage-dependence of maximal conductance, G max. Subsequent single-channel conductance (γ) measurements revealed that voltage-dependence of G max in WT can be explained by the inward-rectifying property of γ, which is greatly changed in PKD2L1 mutants. Homology modelling based on PKD2 and NaVAb structures suggest that such voltage dependence of P open and γ in PKD2L1 could both reflect the charged state of the S4 domain. The present conjunctive experimental and theoretical approaches provide a framework to explore the undetermined mechanism(s) regulating TRP channels that possess non-classical voltage-dependent properties.


Subject(s)
Amino Acids/metabolism , Calcium Channels/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Substitution , Amino Acids/chemistry , Calcium Channels/chemistry , Calcium Channels/genetics , Models, Molecular , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Patch-Clamp Techniques , Receptors, Cell Surface/chemistry , Receptors, Cell Surface/genetics
13.
Sci Rep ; 7(1): 6110, 2017 07 21.
Article in English | MEDLINE | ID: mdl-28733581

ABSTRACT

Membrane potential controls the response of the M2 muscarinic receptor to its ligands. Membrane hyperpolarization increases response to the full agonist acetylcholine (ACh) while decreasing response to the partial agonist pilocarpine. We previously have demonstrated that the regulator of G-protein signaling (RGS) 4 protein discriminates between the voltage-dependent responses of ACh and pilocarpine; however, the underlying mechanism remains unclear. Here we show that RGS4 is involved in the voltage-dependent behavior of the M2 muscarinic receptor-mediated signaling in response to pilocarpine. Additionally we revealed structural determinants on the M2 muscarinic receptor underlying the voltage-dependent response. By electrophysiological recording in Xenopus oocytes expressing M2 muscarinic receptor and G-protein-gated inwardly rectifying K+ channels, we quantified voltage-dependent desensitization of pilocarpine-induced current in the presence or absence of RGS4. Hyperpolarization-induced desensitization of the current required for RGS4, also depended on pilocarpine concentration. Mutations of charged residues in the aspartic acid-arginine-tyrosine motif of the M2 muscarinic receptor, but not intracellular loop 3, significantly impaired the voltage-dependence of RGS4 function. Thus, our results demonstrated that voltage-dependence of RGS4 modulation is derived from the M2 muscarinic receptor. These results provide novel insights into how membrane potential impacts G-protein signaling by modulating GPCR communication with downstream effectors.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/chemistry , Muscarinic Agonists/chemistry , Pilocarpine/chemistry , RGS Proteins/chemistry , Receptor, Muscarinic M2/chemistry , Amino Acid Motifs , Amino Acid Sequence , Animals , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Ion Channel Gating/drug effects , Models, Molecular , Muscarinic Agonists/pharmacology , Mutation , Oocytes/metabolism , Pilocarpine/pharmacology , RGS Proteins/metabolism , Rats , Receptor, Muscarinic M2/genetics , Receptor, Muscarinic M2/metabolism , Signal Transduction , Structure-Activity Relationship , Xenopus laevis
14.
NPJ Syst Biol Appl ; 3: 1, 2017.
Article in English | MEDLINE | ID: mdl-28649429

ABSTRACT

The HD Physiology Project is a Japanese research consortium that aimed to develop methods and a computational platform in which physiological and pathological information can be described in high-level definitions across multiple scales of time and size. During the 5 years of this project, an appropriate software platform for multilevel functional simulation was developed and a whole-heart model including pharmacokinetics for the assessment of the proarrhythmic risk of drugs was developed. In this article, we outline the description and scientific strategy of this project and present the achievements and influence on multilevel integrative systems biology and physiome research.

15.
Front Mol Neurosci ; 10: 408, 2017.
Article in English | MEDLINE | ID: mdl-29358904

ABSTRACT

Inwardly rectifying potassium (Kir) 4.1 channels in astrocytes regulate neuronal excitability by mediating spatial potassium buffering. Although dysfunction of astrocytic Kir4.1 channels is implicated in the development of epileptic seizures, the functional mechanisms of Kir4.1 channels in modulating epileptogenesis remain unknown. We herein evaluated the effects of Kir4.1 inhibition (blockade and knockdown) on expression of brain-derived neurotrophic factor (BDNF), a key modulator of epileptogenesis, in the primary cultures of mouse astrocytes. For blockade of Kir4.1 channels, we tested several antidepressant agents which reportedly bound to and blocked Kir4.1 channels in a subunit-specific manner. Treatment of astrocytes with fluoxetine enhanced BDNF mRNA expression in a concentration-dependent manner and increased the BDNF protein level. Other antidepressants (e.g., sertraline and imipramine) also increased the expression of BDNF mRNA with relative potencies similar to those for inhibition of Kir4.1 channels. In addition, suppression of Kir4.1 expression by the transfection of small interfering RNA (siRNA) targeting Kir4.1 significantly increased the mRNA and protein levels of BDNF. The BDNF induction by Kir4.1 siRNA transfection was suppressed by the MEK1/2 inhibitor U0126, but not by the p38 MAPK inhibitor SB202190 or the JNK inhibitor SP600125. The present results demonstrated that inhibition of Kir4.1 channels facilitates BDNF expression in astrocytes primarily by activating the Ras/Raf/MEK/ERK pathway, which may be linked to the development of epilepsy and other neuropsychiatric disorders.

16.
Pflugers Arch ; 468(10): 1637-49, 2016 10.
Article in English | MEDLINE | ID: mdl-27568193

ABSTRACT

The cochlea of the mammalian inner ear contains an endolymph that exhibits an endocochlear potential (EP) of +80 mV with a [K(+)] of 150 mM. This unusual extracellular solution is maintained by the cochlear lateral wall, a double-layered epithelial-like tissue. Acoustic stimuli allow endolymphatic K(+) to enter sensory hair cells and excite them. The positive EP accelerates this K(+) influx, thereby sensitizing hearing. K(+) exits from hair cells and circulates back to the lateral wall, which unidirectionally transports K(+) to the endolymph. In vivo electrophysiological assays demonstrated that the EP stems primarily from two K(+) diffusion potentials yielded by [K(+)] gradients between intracellular and extracellular compartments in the lateral wall. Such gradients seem to be controlled by ion channels and transporters expressed in particular membrane domains of the two layers. Analyses of human deafness genes and genetically modified mice suggested the contribution of these channels and transporters to EP and hearing. A computational model, which reconstitutes unidirectional K(+) transport by incorporating channels and transporters in the lateral wall and connects this transport to hair cell transcellular K(+) fluxes, simulates the circulation current flowing between the endolymph and the perilymph. In this model, modulation of the circulation current profile accounts for the processes leading to EP loss under pathological conditions. This article not only summarizes the unique physiological and molecular mechanisms underlying homeostasis of the EP and their pathological relevance but also describes the interplay between EP and circulation current.


Subject(s)
Action Potentials , Cochlea/physiology , Deafness/physiopathology , Extracellular Fluid/metabolism , Animals , Cochlea/metabolism , Deafness/metabolism , Homeostasis , Humans , Potassium/metabolism
17.
eNeuro ; 3(3)2016.
Article in English | MEDLINE | ID: mdl-27482536

ABSTRACT

Because a rank-ordered recruitment of motor units occurs during isometric contraction of jaw-closing muscles, jaw-closing motoneurons (MNs) may be recruited in a manner dependent on their soma sizes or input resistances (IRs). In the dorsolateral part of the trigeminal motor nucleus (dl-TMN) in rats, MNs abundantly express TWIK (two-pore domain weak inwardly rectifying K channel)-related acid-sensitive-K(+) channel (TASK)-1 and TASK3 channels, which determine the IR and resting membrane potential. Here we examined how TASK channels are involved in IR-dependent activation/recruitment of MNs in the rat dl-TMN by using multiple methods. The real-time PCR study revealed that single large MNs (>35 µm) expressed TASK1 and TASK3 mRNAs more abundantly compared with single small MNs (15-20 µm). The immunohistochemistry revealed that TASK1 and TASK3 channels were complementarily distributed in somata and dendrites of MNs, respectively. The density of TASK1 channels seemed to increase with a decrease in soma diameter while there were inverse relationships between the soma size of MNs and IR, resting membrane potential, or spike threshold. Dual whole-cell recordings obtained from smaller and larger MNs revealed that the recruitment of MNs depends on their IRs in response to repetitive stimulation of the presumed Ia afferents. 8-Bromoguanosine-cGMP decreased IRs in small MNs, while it hardly changed those in large MNs, and subsequently decreased the difference in spike-onset latency between the smaller and larger MNs, causing a synchronous activation of MNs. These results suggest that TASK channels play critical roles in rank-ordered recruitment of MNs in the dl-TMN.


Subject(s)
Motor Neurons/metabolism , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels/metabolism , Trigeminal Motor Nucleus/metabolism , Animals , Cell Size , Cyclic GMP/metabolism , Dendrites/metabolism , Female , HEK293 Cells , Humans , Male , Membrane Potentials/physiology , Mice , Motor Neurons/cytology , Nerve Tissue Proteins , Oocytes , Potassium Channels/genetics , Potassium Channels, Tandem Pore Domain/genetics , RNA, Messenger/metabolism , Rats, Wistar , Tissue Culture Techniques , Trigeminal Motor Nucleus/cytology , Xenopus laevis
18.
Pflugers Arch ; 468(9): 1609-19, 2016 09.
Article in English | MEDLINE | ID: mdl-27344659

ABSTRACT

Eukaryotic cells exhibit negative resting membrane potential (RMP) owing to the high K(+) permeability of the plasma membrane and the asymmetric [K(+)] between the extracellular and intracellular compartments. However, cochlear fibrocytes, which comprise the basolateral surface of a multilayer epithelial-like tissue, exhibit a RMP of +5 to +12 mV in vivo. This positive RMP is critical for the formation of an endocochlear potential (EP) of +80 mV in a K(+)-rich extracellular fluid, endolymph. The epithelial-like tissue bathes fibrocytes in a regular extracellular fluid, perilymph, and apically faces the endolymph. The EP, which is essential for hearing, represents the potential difference across the tissue. Using in vivo electrophysiological approaches, we describe a potential mechanism underlying the unusual RMP of guinea pig fibrocytes. The RMP was +9.0 ± 3.7 mV when fibrocytes were exposed to an artificial control perilymph (n = 28 cochleae). Perilymphatic perfusion of a solution containing low [Na(+)] (1 mM) markedly hyperpolarized the RMP to -31.1 ± 11.2 mV (n = 10; p < 0.0001 versus the control, Tukey-Kramer test after one-way ANOVA). Accordingly, the EP decreased. Little change in RMP was observed when the cells were treated with a high [K(+)] of 30 mM (+10.4 ± 2.3 mV; n = 7; p = 0.942 versus the control). During the infusion of a low [Cl(-)] solution (2.4 mM), the RMP moderately hyperpolarized to -0.9 ± 3.4 mV (n = 5; p < 0.01 versus the control), although the membranes, if governed by Cl(-) permeability, should be depolarized. These observations imply that the fibrocyte membranes are more permeable to Na(+) than K(+) and Cl(-), and this unique profile and [Na(+)] gradient across the membranes contribute to the positive RMP.


Subject(s)
Cell Membrane Permeability , Cochlea/metabolism , Membrane Potentials , Potassium/metabolism , Sodium/metabolism , Animals , Chlorides/metabolism , Cochlea/cytology , Cochlea/physiology , Endolymph/metabolism , Guinea Pigs , Ion Transport , Male , Perilymph/metabolism
19.
Neuropharmacology ; 109: 18-28, 2016 10.
Article in English | MEDLINE | ID: mdl-27236080

ABSTRACT

The overexpression of Kir3.2, a subunit of the G protein-gated inwardly rectifying K(+) channel, is implicated in some of the neurological phenotypes of Down syndrome (DS). Chemical compounds that block Kir3.2 are expected to improve the symptoms of DS. The purpose of this study is to develop a cell-based screening system to identify Kir3.2 blockers and then investigate the mode of action of the blocker. Chemical screening was carried out using a K(+) transporter-deficient yeast strain that expressed a constitutively active Kir3.2 mutant. The mode of action of an effective blocker was electrophysiologically analyzed using Kir channels expressed in Xenopus oocytes. Proflavine was identified to inhibit the growth of Kir3.2-transformant cells and Kir3.2 activity in a concentration-dependent manner. The current inhibition was strong when membrane potentials (Vm) was above equilibrium potential of K(+) (EK). When Vm was below EK, the blockage apparently depended on the difference between Vm and [K(+)]. Furthermore, the inhibition became stronger by lowering extracellular [K(+)]. These results indicated that the yeast strain serves as a screening system to isolate Kir3.2 blockers and proflavine is a prototype of a pore blocker of Kir3.2.


Subject(s)
G Protein-Coupled Inwardly-Rectifying Potassium Channels/antagonists & inhibitors , G Protein-Coupled Inwardly-Rectifying Potassium Channels/physiology , Growth Inhibitors/pharmacology , Potassium Channel Blockers/pharmacology , Proflavine/pharmacology , Animals , Cell Proliferation/drug effects , Cell Proliferation/physiology , Dose-Response Relationship, Drug , Female , Growth Inhibitors/chemistry , Mice , Potassium Channel Blockers/chemistry , Proflavine/chemistry , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...