Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Am J Physiol Renal Physiol ; 326(4): F669-F679, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38450433

ABSTRACT

Resuscitative endovascular balloon occlusion of the aorta (REBOA) is used to control noncompressible hemorrhage not addressed with traditional tourniquets. However, REBOA is associated with acute kidney injury (AKI) and subsequent mortality in severely injured trauma patients. Here, we investigated how the degree of aortic occlusion altered the extent of AKI in a porcine model. Female Yorkshire-cross swine (n = 16, 68.1 ± 0.7 kg) were anesthetized and had carotid and bilateral femoral arteries accessed for REBOA insertion and distal and proximal blood pressure monitoring. Through a laparotomy, a 6-cm liver laceration was performed and balloon inflation was performed in zone 1 of the aorta for 90 min, during which animals were randomized to target distal mean arterial pressures of 25 or 45 mmHg via balloon volume adjustment. Blood draws were taken at baseline, end of occlusion, and time of death, at which point renal tissues were harvested 6 h after balloon deflation for histological and molecular analyses. Renal blood flow was lower in the 25-mmHg group (48.5 ± 18.3 mL/min) than in the 45-mmHg group (177.9 ± 27.2 mL/min) during the occlusion phase, which recovered and was not different after balloon deflation. AKI was more severe in the 25-mmHg group, as evidenced by circulating creatinine, blood urea nitrogen, and urinary neutrophil gelatinase-associated lipocalin. The 25-mmHg group had increased tubular necrosis, lower renal citrate synthase activity, increased tissue and circulating syndecan-1, and elevated systemic inflammatory cytokines. The extent of renal ischemia-induced AKI is associated with the magnitude of mitochondrial biomass and systemic inflammation, highlighting potential mechanistic targets to combine with partial REBOA strategies to prevent AKI.NEW & NOTEWORTHY Large animal models of ischemia-reperfusion acute kidney injury (IR-AKI) are lacking. This report establishes a titratable IR-AKI model in swine in which a balloon catheter can be used to alter distal pressures experienced by the kidney, thus controlling renal blood flow. Lower blood flow results in greater renal dysfunction and structural damage, as well as lower mitochondrial biomass, elevated systemic inflammation, and vascular dysfunction.


Subject(s)
Acute Kidney Injury , Balloon Occlusion , Reperfusion Injury , Shock, Hemorrhagic , Humans , Swine , Female , Animals , Disease Models, Animal , Hemorrhage/prevention & control , Acute Kidney Injury/etiology , Ischemia , Inflammation , Balloon Occlusion/methods , Shock, Hemorrhagic/therapy
2.
Radiat Res ; 201(5): 406-417, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38319684

ABSTRACT

The purpose of this investigation was to characterize the natural history of a murine total-abdominal-irradiation exposure model to measure gastrointestinal acute radiation injury. Male CD2F1 mice at 12 to 15 weeks old received total-abdominal irradiation using 4-MV linear accelerator X-rays doses of 0, 11, 13.5, 15, 15.75 and 16.5 Gy (2.75 Gy/min). Daily cage-side (i.e., in the animal housing room) observations of clinical signs and symptoms including body weights on all animals were measured up to 10 days after exposure. Jejunum tissues from cohorts of mice were collected at 1, 3, 7 and 10 days after exposure and radiation injury was assessed by histopathological analyses. Results showed time- and dose-dependent loss of body weight [for example at 7 days: 0.66 (±0.80) % loss for 0 Gy, 6.40 (±0.76) % loss at 11 Gy, 9.43 (±2.06) % loss at 13.5 Gy, 23.53 (± 1.91) % loss at 15 Gy, 29.97 (±1.16) % loss at 15.75 Gy, and 31.79 (±0.76) % loss at 16.5 Gy]. Negligible clinical signs and symptoms, except body weight changes, of radiation injury were observed up to 10 days after irradiation with doses of 11 to 15 Gy. Progressive increases in the severity of clinical signs and symptoms were found after irradiation with doses >15 Gy. Jejunum histology showed a progressive dose-dependent increase in injury. For example, at 7 days postirradiation, the percent of crypts, compared to controls, decreased to 82.3 (±9.5), 69.2 (±12.3), 45.4 (±11.9), 18.0 (±3.4), and 11.5 (± 1.8) with increases in doses from 11 to 16.5 Gy. A mucosal injury scoring system was used that mainly focused on changes in villus morphology damage (i.e., subepithelial spaces near the tips of the villi with capillary congestion, significant epithelial lifting along the length of the villi with a few denuded villus tips). Peak levels of total-abdominal irradiation induced effects on the mucosal injury score were seen 7 days after irradiation for doses ≥15 Gy, with a trend to show a decline after 7 days. A murine multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system was established based on clinical signs and symptoms that included measures of appearance (i.e., hunched and/or fluffed fur), respiratory rate, general (i.e., decreased mobility) and provoked behavior (i.e., subdued response to stimulation), weight loss, and feces/diarrhea score combined with jejunum mucosal-injury grade score. In summary, the natural-history radio-response for murine partial-body irradiation exposures is important for establishing a well-characterized radiation model system; here we established a multiple-parameter gastrointestinal acute-radiation syndrome severity-scoring system that provides a radiation injury gastrointestinal tissue-based assessment utility.


Subject(s)
Acute Radiation Syndrome , Animals , Mice , Male , Acute Radiation Syndrome/pathology , Acute Radiation Syndrome/etiology , Dose-Response Relationship, Radiation , Jejunum/radiation effects , Jejunum/pathology , Disease Models, Animal , Severity of Illness Index , Gastrointestinal Tract/radiation effects , Gastrointestinal Tract/pathology , Body Weight/radiation effects , Radiation Injuries, Experimental/pathology
3.
Int J Radiat Biol ; 99(7): 1037-1045, 2023.
Article in English | MEDLINE | ID: mdl-37172305

ABSTRACT

PURPOSE: Severity scoring systems for ionizing radiation-induced gastrointestinal injury have been used in animal radiation models, human studies involving the use of radiation therapy, and human radiation accidents. Various radiation exposure scenarios (i.e. total body irradiation, total abdominal irradiation, etc.) have been used to investigate ionizing radiation-induced gastrointestinal injury. These radiation-induced gastrointestinal severity scoring systems are based on clinical signs and symptoms and gastrointestinal-specific biomarkers (i.e. citrulline, etc.). In addition, the time course for radiation-induced changes in blood citrulline levels were compared across various animal (i.e. mice, minipigs, Rhesus Macaque, etc.) and human model systems. CONCLUSIONS: A worksheet tool was developed to prioritize individuals with severe life-threatening gastrointestinal acute radiation syndrome, based on the design of the Exposure and Symptom Tool addressing hematopoietic acute radiation syndrome, to rescue individuals from potential gastrointestinal acute radiation syndrome injury. This tool provides a triage diagnostic approach to assist first responders to assess individuals suspected of showing gastrointestinal acute radiation syndrome severity to guide medical management, hence enhancing medical readiness for managing radiological casualties.


Subject(s)
Acute Radiation Syndrome , Medical Countermeasures , Swine , Humans , Animals , Mice , Swine, Miniature , Acute Radiation Syndrome/diagnosis , Acute Radiation Syndrome/etiology , Citrulline , Macaca mulatta
4.
Seizure ; 81: 1-7, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32682283

ABSTRACT

OBJECTIVE: Tissue remodeling has been described in brain circuits that are involved in the generation and propagation of epileptic seizures. Human and animal studies suggest that the anterior piriform cortex (aPC) is crucial for seizure expression in focal epilepsies. Here, we investigate the effect of kainic-acid (KA)-induced seizures on the effective connectivity of the aPC with bilateral hippocampal CA3 regions using cerebro-cerebral evoked potentials (CCEPs). METHODS: Adult male Sprague-Dawley rats were implanted with a tripolar electrode in the left aPC for stimulation and recording, and with unipolar recording electrodes in bilateral CA3 regions. Single pulse stimulations were given to the aPC and CCEPs were averaged before KA injections and after the emergence of spontaneous recurrent seizures (SRS). Similar recordings at equivalent time intervals were obtained from animals that received saline injections instead of KA (controls). RESULTS: In the experimental group, the percentage change of increased amplitude of the contralateral (but not ipsilateral) CA3 CCEPs between pre-KA injection and after the emergence of SRS was significantly greater than in controls. No significant single-pulse-induced spectral change responses were observed in either epileptic or control rats when comparing pre- and post-stimulus time intervals. Also, we found no correlation between seizure frequency and the extent of amplitude changes in the CCEPs. CONCLUSIONS: In the KA model, epileptogenesis results in plastic changes that manifest as an amplification of evoked potential amplitudes recorded in the contralateral hippocampus in response to single-pulse stimulation of the aPC. These results suggest epileptogenesis-induced facilitation of interhemispheric connectivity between the aPC and the hippocampus. Since the amplitude increase of the contralateral CCEP is a possible in vivo biomarker of epilepsy, any intervention (e.g. neuromodulatory) that can reverse this phenomenon may hold a potential antiepileptic efficacy.


Subject(s)
Epilepsy , Kainic Acid , Animals , Epilepsy/chemically induced , Hippocampus , Kainic Acid/toxicity , Male , Rats , Rats, Sprague-Dawley , Seizures
5.
Exp Neurol ; 325: 113070, 2020 03.
Article in English | MEDLINE | ID: mdl-31778664

ABSTRACT

Deep brain stimulation (DBS) may help control seizures in individuals with medically intractable epilepsy who are not candidates for resective surgery. The current review focuses on some preclinical studies of DBS of the piriform cortex (PC), an area involved in the generation and maintenance of seizures, as a potential therapeutic option for refractory epilepsy. We also present findings suggesting the safety of low frequency stimulation (LFS) of the PC on memory. A variety of LFS parameters have been suggested as an effective treatment strategy for refractory epilepsy. In generalized epilepsy, however, recent studies suggest that LFS may exacerbate seizures and high frequency stimulation (HFS) might be an alternative. Hence, further studies are required to explore the potential therapeutic targets and proper stimulation parameters for the successful translation of DBS of the PC to the clinic.


Subject(s)
Electric Stimulation/methods , Piriform Cortex/physiology , Seizures/physiopathology , Seizures/therapy , Animals , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/therapy , Humans
6.
Front Neuroanat ; 13: 8, 2019.
Article in English | MEDLINE | ID: mdl-30809132

ABSTRACT

The neural mechanisms of altered consciousness that accompanies most epileptic seizures are not known. We have reported alteration of consciousness resulting from electrical stimulation of the claustrum via a depth electrode in a woman with refractory focal epilepsy. Additionally, there are reports that suggest possible claustral involvement in focal epilepsy, including MRI findings of bilaterally increased T2 signal intensity in patients with status epilepticus (SE). Although its cytoarchitecture and connectivity have been studied extensively, the precise role of the claustrum in consciousness processing, and, thus, its contribution to the semiology of dyscognitive seizures are still elusive. To investigate the role of the claustrum in rats, we studied the effect of high-frequency stimulation (HFS) of the claustrum on performance in the operant chamber. We also studied the inter-claustral and the claustro-hippocampal connectivity through cerebro-cerebral evoked potentials (CCEPs), and investigated the involvement of the claustrum in kainate (KA)-induced seizures. We found that HFS of the claustrum decreased the performance in the operant task in a manner that was proportional to the current intensity used. In this article, we present previously unpublished data about the effect of stimulating extra-claustral regions in the operant chamber task as a control experiment. In these animals, stimulation of the corpus callosum, the largest interhemispheric commissure, as well as the orbitofrontal cortex in the vicinity of the claustrum did not produce that same effect as with claustral stimulation. Additionally, CCEPs established the presence of effective connectivity between both claustra, as well as between the claustrum and bilateral hippocampi indicating that these connections may be part of the circuitry involved in alteration of consciousness in limbic seizures. Lastly, some seizures induced by KA injections showed an early involvement of the claustrum with later propagation to the hippocampi. Further work is needed to clarify the exact role of the claustrum in mediating alteration of consciousness during epileptic seizures.

7.
Cereb Cortex ; 26(3): 977-90, 2016 Mar.
Article in English | MEDLINE | ID: mdl-25405940

ABSTRACT

Neurotensin (NT) is a 13-amino acid peptide and serves as a neuromodulator in the brain. Whereas NT has been implicated in learning and memory, the underlying cellular and molecular mechanisms are ill-defined. Because the dentate gyrus receives profound innervation of fibers containing NT and expresses high density of NT receptors, we examined the effects of NT on the excitability of dentate gyrus granule cells (GCs). Our results showed that NT concentration dependently increased action potential (AP) firing frequency of the GCs by the activation of NTS1 receptors resulting in the depolarization of the GCs. NT-induced enhancement of AP firing frequency was not caused indirectly by releasing glutamate, GABA, acetylcholine, or dopamine, but due to the inhibition of TASK-3 K(+) channels. NT-mediated excitation of the GCs was G protein dependent, but independent of phospholipase C, intracellular Ca(2+) release, and protein kinase C. Immunoprecipitation experiment demonstrates that the activation of NTS1 receptors induced the association of Gαq/11 and TASK-3 channels suggesting a direct coupling of Gαq/11 to TASK-3 channels. Endogenously released NT facilitated the excitability of the GCs contributing to the induction of long-term potentiation at the perforant path-GC synapses. Our results provide a cellular mechanism that helps to explain the roles of NT in learning and memory.


Subject(s)
Dentate Gyrus/physiology , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Neurons/physiology , Potassium Channels, Tandem Pore Domain/metabolism , Potassium Channels/metabolism , Receptors, Neurotensin/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Dentate Gyrus/drug effects , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , HEK293 Cells , Humans , Long-Term Potentiation/drug effects , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Mice, Knockout , Neurons/drug effects , Neurotensin/metabolism , Potassium Channels/genetics , Rats, Sprague-Dawley , Receptors, Neurotensin/genetics , Tissue Culture Techniques
8.
J Neurosci ; 34(20): 7027-42, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24828655

ABSTRACT

Neurotensin (NT) is a tridecapeptide distributed in the CNS, including the entorhinal cortex (EC), a structure that is crucial for learning and memory and undergoes the earliest pathological alterations in Alzheimer's disease (AD). Whereas NT has been implicated in modulating cognition, the cellular and molecular mechanisms by which NT modifies cognitive processes and the potential therapeutic roles of NT in AD have not been determined. Here we examined the effects of NT on neuronal excitability and spatial learning in the EC, which expresses high density of NT receptors. Brief application of NT induced persistent increases in action potential firing frequency, which could last for at least 1 h. NT-induced facilitation of neuronal excitability was mediated by downregulation of TREK-2 K(+) channels and required the functions of NTS1, phospholipase C, and protein kinase C. Microinjection of NT or NTS1 agonist, PD149163, into the EC increased spatial learning as assessed by the Barnes Maze Test. Activation of NTS1 receptors also induced persistent increases in action potential firing frequency and significantly improved the memory status in APP/PS1 mice, an animal model of AD. Our study identifies a cellular substrate underlying learning and memory and suggests that NTS1 agonists may exert beneficial actions in an animal model of AD.


Subject(s)
Alzheimer Disease/physiopathology , Entorhinal Cortex/drug effects , Maze Learning/drug effects , Neurons/drug effects , Neurotensin/pharmacology , Receptors, Neurotensin/agonists , Action Potentials/drug effects , Action Potentials/physiology , Alzheimer Disease/psychology , Animals , Disease Models, Animal , Entorhinal Cortex/physiopathology , Maze Learning/physiology , Mice , Neurons/physiology
9.
PLoS One ; 9(2): e88109, 2014.
Article in English | MEDLINE | ID: mdl-24505399

ABSTRACT

Whereas corticotropin-releasing factor (CRF) has been considered as the most potent epileptogenic neuropeptide in the brain, its action site and underlying mechanisms in epilepsy have not been determined. Here, we found that the entorhinal cortex (EC) expresses high level of CRF and CRF2 receptors without expression of CRF1 receptors. Bath application of CRF concentration-dependently increased the frequency of picrotoxin (PTX)-induced epileptiform activity recorded from layer III of the EC in entorhinal slices although CRF alone did not elicit epileptiform activity. CRF facilitated the induction of epileptiform activity in the presence of subthreshold concentration of PTX which normally would not elicit epileptiform activity. Bath application of the inhibitor for CRF-binding proteins, CRF6-33, also increased the frequency of PTX-induced epileptiform activity suggesting that endogenously released CRF is involved in epileptogenesis. CRF-induced facilitation of epileptiform activity was mediated via CRF2 receptors because pharmacological antagonism and knockout of CRF2 receptors blocked the facilitatory effects of CRF on epileptiform activity. Application of the adenylyl cyclase (AC) inhibitors blocked CRF-induced facilitation of epileptiform activity and elevation of intracellular cyclic AMP (cAMP) level by application of the AC activators or phosphodiesterase inhibitor increased the frequency of PTX-induced epileptiform activity, demonstrating that CRF-induced increases in epileptiform activity are mediated by an increase in intracellular cAMP. However, application of selective protein kinase A (PKA) inhibitors reduced, not completely blocked CRF-induced enhancement of epileptiform activity suggesting that PKA is only partially required. Our results provide a novel cellular and molecular mechanism whereby CRF modulates epilepsy.


Subject(s)
Corticotropin-Releasing Hormone/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Entorhinal Cortex/metabolism , Entorhinal Cortex/physiology , Receptors, Corticotropin-Releasing Hormone/metabolism , Animals , Cyclic AMP/metabolism , Rats , Rats, Sprague-Dawley , Signal Transduction/physiology
10.
Cereb Cortex ; 24(12): 3195-208, 2014 Dec.
Article in English | MEDLINE | ID: mdl-23843440

ABSTRACT

Whereas the entorhinal cortex (EC) receives profuse dopaminergic innervations from the midbrain, the effects of dopamine (DA) on γ-Aminobutyric acid (GABA)ergic interneurons in this brain region have not been determined. We probed the actions of DA on GABAA receptor-mediated synaptic transmission in the EC. Application of DA increased the frequency, not the amplitude, of spontaneous IPSCs (sIPSCs) and miniature IPSCs (mIPSCs) recorded from entorhinal principal neurons, but slightly reduced the amplitude of the evoked IPSCs. The effects of DA were unexpectedly found to be mediated by α1 adrenoreceptors, but not by DA receptors. DA endogenously released by the application of amphetamine also increased the frequency of sIPSCs. Ca(2+) influx via T-type Ca(2+) channels was required for DA-induced facilitation of sIPSCs and mIPSCs. DA depolarized and enhanced the firing frequency of action potentials of interneurons. DA-induced depolarization was independent of extracellular Na(+) and Ca(2+) and did not require the functions of hyperpolarization-activated (Ih) channels and T-type Ca(2+) channels. DA-generated currents showed a reversal potential close to the K(+) reversal potential and inward rectification, suggesting that DA inhibits the inward rectifier K(+) channels (Kirs). Our results demonstrate that DA facilitates GABA release by activating α1 adrenoreceptors to inhibit Kirs, which further depolarize interneurons resulting in secondary Ca(2+) influx via T-type Ca(+) channels.


Subject(s)
Calcium Channels, T-Type/physiology , Dopamine/metabolism , Entorhinal Cortex/cytology , Neurons/physiology , Potassium Channels, Inwardly Rectifying/physiology , Receptors, Adrenergic, alpha-1/physiology , Synaptic Transmission/physiology , gamma-Aminobutyric Acid/metabolism , Animals , Animals, Newborn , Calcium Channel Blockers/pharmacology , Chelating Agents/pharmacology , Dopamine/pharmacology , Dose-Response Relationship, Drug , Egtazic Acid/analogs & derivatives , Egtazic Acid/pharmacology , Electric Stimulation , In Vitro Techniques , Inhibitory Postsynaptic Potentials/drug effects , Mibefradil/pharmacology , Neural Inhibition/drug effects , Neurons/drug effects , Neurotransmitter Agents/pharmacology , Patch-Clamp Techniques , Potassium Channel Blockers/pharmacology , Rats , Rats, Sprague-Dawley , Synaptic Transmission/drug effects , gamma-Aminobutyric Acid/pharmacology
11.
PLoS One ; 8(4): e62185, 2013.
Article in English | MEDLINE | ID: mdl-23614032

ABSTRACT

Adenosine is an inhibitory neuromodulator that exerts antiepileptic effects in the brain and the entorhinal cortex (EC) is an essential structure involved in temporal lobe epilepsy. Whereas microinjection of adenosine into the EC has been shown to exert powerful antiepileptic effects, the underlying cellular and molecular mechanisms in the EC have not been determined yet. We tested the hypothesis that adenosine-mediated modulation of synaptic transmission contributes to its antiepileptic effects in the EC. Our results demonstrate that adenosine reversibly inhibited glutamatergic transmission via activation of adenosine A1 receptors without effects on GABAergic transmission in layer III pyramidal neurons in the EC. Adenosine-induced depression of glutamatergic transmission was mediated by inhibiting presynaptic glutamate release probability and decreasing the number of readily releasable vesicles. Bath application of adenosine also reduced the frequency of the miniature EPSCs recorded in the presence of TTX suggesting that adenosine may interact with the exocytosis processes downstream of Ca(2+) influx. Both Gαi/o proteins and the protein kinase A pathway were required for adenosine-induced depression of glutamatergic transmission. We further showed that bath application of picrotoxin to the EC slices induced stable epileptiform activity and bath application of adenosine dose-dependently inhibited the epileptiform activity in this seizure model. Adenosine-mediated depression of epileptiform activity was mediated by activation of adenosine A1 receptors and required the functions of Gαi/o proteins and protein kinase A pathway. Our results suggest that the depression of glutamatergic transmission induced by adenosine contributes to its antiepileptic effects in the EC.


Subject(s)
Adenosine/metabolism , Entorhinal Cortex/metabolism , Glutamic Acid/metabolism , Animals , In Vitro Techniques , Rats , Rats, Sprague-Dawley , Seizures/metabolism
12.
Neuropharmacology ; 63(7): 1218-26, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22884625

ABSTRACT

Whereas vasopressin has been shown to enhance memory possibly by increasing long-term potentiation and direct excitation of the pyramidal neurons in the hippocampus, the effects of vasopressin on GABAergic transmission in the hippocampus remain to be determined. Here we examined the effects of vasopressin on GABAergic transmission onto CA1 pyramidal neurons and our results demonstrate that bath application of [Arg(8)]-vasopressin (AVP) dose-dependently increased the frequency of spontaneous IPSCs (sIPSCs) recorded from CA1 pyramidal neurons via activation of V(1A) receptors. Immunohistological staining and western blot further confirmed that both CA1 pyramidal neurons and interneurons expressed V(1A) receptors. Bath application of AVP altered neither the frequency nor the amplitude of miniature IPSCs in the presence of tetradotoxin and failed to change significantly the amplitude of evoked IPSCs recorded from CA1 pyramidal neurons. AVP increased the firing frequency of action potentials by depolarizing the GABAergic interneurons in the stratum radiatum of CA1 region. AVP-mediated depolarization of interneurons was mediated by inhibition of a background K(+) conductance which was insensitive to extracellular tetraethylammonium, Cs(+), 4-aminopyridine, tertiapin-Q and Ba(2+). AVP-induced depolarization of interneurons was dependent on Gα(q/11) but independent of phospholipase C, intracellular Ca(2+) release and protein kinase C. The inhibitory effects of AVP-mediated modulation of GABA release onto CA1 pyramidal neurons were overwhelmed by its strong excitation of CA1 pyramidal neurons in physiological condition but revealed when its direct excitation of the pyramidal neurons was blocked suggesting that AVP-mediated modulation of GABAergic transmission fine-tunes the excitability of CA1 pyramidal neurons.


Subject(s)
Hippocampus/metabolism , Neurons/metabolism , Receptors, Vasopressin/metabolism , Synaptic Transmission/physiology , Vasopressins/metabolism , gamma-Aminobutyric Acid/metabolism , Action Potentials/drug effects , Action Potentials/physiology , Animals , Hippocampus/drug effects , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/physiology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Neural Inhibition/drug effects , Neural Inhibition/physiology , Neurons/drug effects , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Synapses/drug effects , Synapses/metabolism , Synaptic Transmission/drug effects , Vasopressins/pharmacology
13.
Eur J Pharmacol ; 689(1-3): 17-24, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22683873

ABSTRACT

Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain where it interacts with two G protein-coupled receptors (CCK1 and CCK2). Both types of CCK receptors are coupled to G(q/11) proteins resulting in increased function of phospholipase C (PLC) pathway. Whereas CCK has been suggested to increase neuronal excitability in the brain via activation of cationic channels, the types of cationic channels have not yet been identified. Here, we co-expressed CCK2 receptors and TRPC5 channels in human embryonic kidney (HEK) 293 cells and studied the effects of CCK on TRPC5 channels using patch-clamp techniques. Our results demonstrate that activation of CCK2 receptors robustly potentiates the function of TRPC5 channels. CCK-induced activation of TRPC5 channels requires the functions of G-proteins and PLC and depends on extracellular Ca(2+). The activation of TRPC5 channels mediated by CCK2 receptors is independent of IP(3) receptors and protein kinase C. CCK-induced opening of TRPC5 channels is not store-operated because application of thapsigargin to deplete intracellular Ca(2+) stores failed to alter CCK-induced TRPC5 channel currents significantly. Bath application of CCK also significantly increased the open probability of TRPC5 single channel currents in cell-attached patches. Because CCK exerts extensive effects in the brain, our results may provide a novel mechanism to explain its roles in modulating neuronal excitability.


Subject(s)
Cholecystokinin/pharmacology , Protein Kinase C/metabolism , Receptor, Cholecystokinin B/biosynthesis , TRPC Cation Channels/metabolism , Type C Phospholipases/physiology , HEK293 Cells , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Receptor, Cholecystokinin B/agonists , TRPC Cation Channels/agonists
14.
Cereb Cortex ; 22(3): 584-94, 2012 Mar.
Article in English | MEDLINE | ID: mdl-21677028

ABSTRACT

Glutamate interacts with ionotropic and metabotropic glutamate receptors (mGluRs). Whereas the entorhinal cortex (EC) is a principal structure involved in learning and memory, the roles of mGluRs in synaptic transmission in the EC have not been completely determined. Here, we show that activation of group II mGluRs (mGluR II) induced robust depression of glutamatergic transmission in the EC. The mGluR II-induced depression was due to a selective reduction of presynaptic release probability without alterations of the quantal size and the number of release sites. The mechanisms underlying mGluR II-mediated suppression of glutamate release included the inhibition of presynaptic release machinery and the depression of presynaptic P/Q-type Ca(2+) channels. Whereas mGluR II-induced depression required the function of Gα(i/o) proteins, protein kinase A (PKA) pathway was only involved in mGluR II-mediated inhibition of release machinery and thereby partially required for mGluR II-induced inhibition of glutamate release. Presynaptic stimulation at 5 Hz for 10 min also induced depression of glutamatergic transmission via activation of presynaptic mGluR II suggesting an endogenous role for mGluR II in modulating glutamatergic transmission.


Subject(s)
Entorhinal Cortex/physiology , Glutamic Acid/metabolism , Neural Inhibition/physiology , Receptors, Metabotropic Glutamate/physiology , Synaptic Transmission/physiology , Animals , Models, Neurological , Organ Culture Techniques , Presynaptic Terminals/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Metabotropic Glutamate/agonists , Receptors, Metabotropic Glutamate/metabolism
15.
J Neurophysiol ; 106(3): 1515-24, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21753024

ABSTRACT

Cholecystokinin (CCK) is one of the most abundant neuropeptides in the brain, where it interacts with two G protein-coupled receptors (CCK-1 and CCK-2). Activation of both CCK receptors increases the activity of PLC, resulting in increases in intracellular calcium ion (Ca(2+)) release and activation of PKC. Whereas high density of CCK receptors has been detected in the superficial layers of the entorhinal cortex (EC), the functions of CCK in this brain region have not been determined. Here, we studied the effects of CCK on neuronal excitability of layer III pyramidal neurons in the EC. Our results showed that CCK remarkably increased the firing frequency of action potentials (APs). The effects of CCK on neuronal excitability were mediated via activation of CCK-2 receptors and required the functions of G proteins and PLC. However, CCK-mediated facilitation of neuronal excitability was independent of inositol trisphosphate receptors and PKC. CCK facilitated neuronal excitability by activating a cationic channel to generate membrane depolarization. The effects of CCK were suppressed by the generic, nonselective cationic channel blockers, 2-aminoethyldiphenyl borate and flufenamic acid, but potentiated by gadolinium ion and lanthanum ion at 100 µM. Depletion of extracellular Ca(2+) also counteracted CCK-induced increases in AC firing frequency. Moreover, CCK-induced enhancement of neuronal excitability was inhibited significantly by intracellular application of the antibody to transient receptor potential channel 5 (TRPC5), suggesting the involvement of TRPC5 channels. Our results provide a cellular and molecular mechanism to help explain the functions of CCK in vivo.


Subject(s)
Cholecystokinin/physiology , Entorhinal Cortex/physiology , Neurons/physiology , TRPC Cation Channels/physiology , Animals , Antibodies/toxicity , Cholecystokinin/antagonists & inhibitors , Cholecystokinin/deficiency , Mice , Mice, Knockout , Neurons/immunology , Pyramidal Cells/immunology , Pyramidal Cells/physiology , Rats , Rats, Sprague-Dawley , Receptor, Cholecystokinin B/deficiency , Receptor, Cholecystokinin B/genetics , TRPC Cation Channels/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...