Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sovrem Tekhnologii Med ; 12(3): 47-52, 2021.
Article in English | MEDLINE | ID: mdl-34795979

ABSTRACT

The aim of the study was to assess the capabilities of combined application of dual-wavelength fluorescence visualization and contactless skin thermometry during photodynamic therapy monitoring (PDT) of basal cell cancer. MATERIALS AND METHODS: The study was performed at the University Clinic of Privolzhsky Research Medical University (Nizhny Novgorod). Nine clinically, dermatoscopically, and histologically verified foci of basal cell skin cancer were exposed to PDT sessions (wavelength of 662 nm, light dose density of 150 J/cm2) with systemic application of chlorin-based photosensitizer Fotoditazin. A semiconductor laser system Latus-T (Russia) was employed for irradiation. Dual-wavelength fluorescence visualization and contactless thermometry with an IR pyrometer were used to monitor the PDT sessions. RESULTS: The PDT sessions of nine foci of basal cell cancer were carried out under the control of fluorescence imaging and contactless thermometry. Photosensitizer photobleaching in all foci amounted to 40% signifying a percent of photosensitizer involved in the photodynamic reaction. It has been shown that the combined employment of dual-wavelength fluorescence monitoring and contactless thermometry during the PDT of basal cell skin cancer allows oncologists to control simultaneously the degree of photosensitizer photobleaching and the depth of the photodynamic effect in tissues, the extent of involving the mechanisms associated with hyperthermia as well as the correctness of the procedure conducting. In the course of 9-month dynamic follow-up after the treatment, no clinical and dermatoscopic signs of recurrence were found. CONCLUSION: A bimodal control of PDT enables the assessment of the correctness and efficacy of the procedure performance. The contactless control of tissue heating allows ensuring the temperature mode for hyperthermia realization, while the fluorescence monitoring makes it possible to evaluate the accumulation of the photosensitizer in the tumor and the depth of the PDT action as well as to predict the procedure efficacy based on the photobleaching data. The complementary use of these techniques allows the adjustment of the mode directly in the course of the PDT procedure. The acquisition of the sufficient statistical data on the combined monitoring will result in the development of a novel PDT protocol.


Subject(s)
Carcinoma, Basal Cell , Neoplasms, Basal Cell , Photochemotherapy , Skin Neoplasms , Thermometry , Carcinoma, Basal Cell/drug therapy , Humans , Photochemotherapy/methods , Skin Neoplasms/drug therapy
2.
Biomed Phys Eng Express ; 5(3)2019 Mar 12.
Article in English | MEDLINE | ID: mdl-34247150

ABSTRACT

Modern radiation therapy of malignant tumors requires careful selection of conditions that can improve the effectiveness of the treatment. The study of the dynamics and mechanisms of tumor reoxygenation after radiation therapy makes it possible to select the regimens for optimizing the ongoing treatment. Diffuse optical spectroscopy (DOS) is among the methods used for non-invasive assessment of tissue oxygenation. In this work DOS was used forin vivoregistration of changes in oxygenation level of an experimental rat tumor after single-dose irradiation at a dose of 10 Gy and investigation of their possible mechanisms. It was demonstrated that in 24 h after treatment, tumor oxygenation increases, which is mainly due to an increase in the oxygen supply to the tissues. DOS is demonstrated to be efficient for study of changes in blood flow parameters when monitoring tumor response to therapy.

SELECTION OF CITATIONS
SEARCH DETAIL
...