Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(2): 1802-1824, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297724

ABSTRACT

It has been well established that photonic crystal nanocavities with wavelength sized mode volume enable various integrable photonic devices with extremely small consumption energy and small footprint. In this study, we explore the possibility of non-volatile functionalities employing photonic crystal nanocavities and phase change material, Ge2Sb2Te5 (GST). Recently, non-volatile photonic devices based on GST have attracted significant interest and are expected to enable energy-efficient photonic processing, especially for optical computing. However, the device size and the area of GST in previous studies have been rather large. Here, we propose and fabricate Si photonic crystal nanocavities on which submicron-square GST patterns are selectively loaded. Because of the strong light confinement, extremely small area of GST is sufficient to manipulate the cavity mode. We have succeeded to fabricate 30-nm-thick and several-100nm-square GST blocks patterned at the center of photonic crystal cavity with a high alignment accuracy. We confirmed that the resonant wavelength and Q-factor of cavity modes are controlled by the phase change of GST. Moreover, cavity formation controlled by submicron-sized GST is also demonstrated by GST-loaded photonic-crystal line-defect waveguides. Our approach in which we place sub-micron-sized GST inside a photonic crystal nanocavity is promising for realizing extremely energy-efficient non-volatile integrable photonic devices, such as switches, modulators, memories, and reconfigurable novel devices.

2.
Opt Express ; 31(7): 11864-11884, 2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37155812

ABSTRACT

An H1 photonic crystal nanocavity (PCN) is based on a single point defect and has eigenmodes with a variety of symmetric features. Thus, it is a promising building block for photonic tight-binding lattice systems that can be used in studies on condensed matter, non-Hermitian and topological physics. However, improving its radiative quality (Q) factor has been considered challenging. Here, we report the design of a hexapole mode of an H1 PCN with a Q factor exceeding 108. We achieved such extremely high-Q conditions by varying only four structural modulation parameters thanks to the C6 symmetry of the mode, despite the need of more complicated optimizations for many other PCNs. Our fabricated silicon H1 PCNs exhibited a systematic change in their resonant wavelengths depending on the spatial shift of the air holes in units of 1 nm. Out of 26 such samples, we found eight PCNs with loaded Q factors over one million. The best sample was of a measured Q factor of 1.2 × 106, and its intrinsic Q factor was estimated to be 1.5 × 106. We examined the difference between the theoretical and experimental performances by conducting a simulation of systems with input and output waveguides and with randomly distributed radii of air holes. Automated optimization using the same design parameters further increased the theoretical Q factor by up to 4.5 × 108, which is two orders of magnitude higher than in the previous studies. We clarify that this striking improvement of the Q factor was enabled by the gradual variation in effective optical confinement potential, which was missing in our former design. Our work elevates the performance of the H1 PCN to the ultrahigh-Q level and paves the way for its large-scale arrays with unconventional functionalities.

3.
Opt Express ; 26(20): 26598-26617, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30469744

ABSTRACT

Few-cell point-defect photonic crystal (PhC) nanocavities (such as LX and H1 type cavities), have several unique characteristics including an ultra-small mode volume (Vm), a small device footprint advantageous for dense integration, and a large mode spacing advantageous for high spontaneous-emission coupling coefficient (ß), which are promising for energy-efficient densely-integratable on-chip laser light sources enhanced by the cavity QED effect. To achieve this goal, a high quality factor (Q) is essential, but conventional few-cell point-defect cavities do not have a sufficiently high Q. Here we adopt a series of modified designs of LX cavities with a buried heterostructure (BH) multi-quantum-well (MQW) active region that can achieve a high Q while maintaining their original advantages and fabricate current-injection laser devices. We have successfully observed continuous-wave (CW) lasing in InP-based L1, L2, L3 and L5 PhC nanocavities at 23°C with a DC current injection lower than 10 µA and a bias voltage lower than 0.9 V. The active volume is ultra-small while maintaining a sufficiently high confinement factor, which is as low as ~10-15 cm3 for a single-cell (L1) nanocavity. This is the first room-temperature current-injection CW lasing from any types of few-cell point-defect PhC nanocavities (LX or H1 types). Our report marks an important step towards realizing a nanolaser diode with a high cavity-QED effect, which is promising for use with on-chip densely integrated laser sources in photonic networks-on-chip combined with CMOS processors.

4.
Opt Express ; 26(8): 9552-9564, 2018 Apr 16.
Article in English | MEDLINE | ID: mdl-29715904

ABSTRACT

Coupled cavities have been used previously to realize on-chip low-dispersion slow-light waveguides, but the bandwidth was usually narrower than 10 nm and the total length was much shorter than 1 mm. Here we report long (0.05-2.5 mm) slow-light coupled cavity waveguides formed by using 50, 200, and 1,000 L3 photonic crystal nanocavities with an optical volume smaller than (λ/n)3, slanted from Γ-K orientation. We demonstrate experimentally the formation of a single-mode wideband coupled cavity mode with a bandwidth of up to 32nm (4THz) in telecom C-band, generated from the ultra-narrow-band (~300 MHz) fundamental mode of each L3 nanocavity, by controlling the cavity array orientation. Thanks to the ultrahigh-Q nanocavity design, coupled cavity waveguides longer than 1 mm exhibited low loss and allowed time-of-flight dispersion measurement over a bandwidth up to 22 nm by propagating a short pulse over 1,000 coupled L3 nanocavities. The highly-dense slanted array of L3 nanocavity demonstrated unprecedentedly high cavity coupling among the nanocavities. The scheme we describe provides controllable planar dispersion-managed waveguides as an alternative to W1-based waveguides on a photonic crystal chip.

5.
Opt Express ; 24(24): 28039-28055, 2016 Nov 28.
Article in English | MEDLINE | ID: mdl-27906370

ABSTRACT

Optomechanical control of on-chip emitters is an important topic related to integrated all-optical circuits. However, there is neither a realization nor a suitable optomechanical structure for this control. The biggest obstacle is that the emission signal can hardly be distinguished from the pump light because of the several orders' power difference. In this study, we designed and experimentally verified an optomechanical oscillation system, in which a lumped mechanical oscillator connected two optically isolated pairs of coupled one-dimensional photonic crystal cavities. As a functional device, the two pairs of coupled cavities were respectively used as an optomechanical pump for the lumped oscillator (cavity pair II, wavelengths were designed to be within a 1.5 µm band) and a modulation target of the lumped oscillator (cavity pair I, wavelengths were designed to be within a 1.2 µm band). By conducting finite element method simulations, we found that the lumped-oscillator-supported configurations of both cavity pairs enhance the optomechanical interactions, especially for higher order optical modes, compared with their respective conventional side-clamped configurations. Besides the desired first-order in-plane antiphase mechanical mode, other mechanical modes of the lumped oscillator were investigated and found to possibly have optomechanical applications with a versatile degree of freedom. In experiments, the oscillator's RF spectra were probed using both cavity pairs I and II, and the results matched those of the simulations. Dynamic detuning of the optical spectrum of cavity pair I was then implemented with a pumped lumped oscillator. This was the first demonstration of an optomechanical lumped oscillator connecting two optically isolated pairs of coupled cavities, whose biggest advantage is that one cavity pair can be modulated with an lumped oscillator without interference from the pump light in the other cavity pair. Thus, the oscillator is a suitable platform for optomechanical control of integrated lasers, cavity quantum electrodynamics, and spontaneous emission. Furthermore, this device may open the door on the study of interactions between photons, phonons, and excitons in the quantum regime.

6.
Opt Express ; 24(23): 26792-26808, 2016 Nov 14.
Article in English | MEDLINE | ID: mdl-27857409

ABSTRACT

Nanowire-induced SiN photonic crystal (PhC) nanocavities specifically designed for the ultra-violet and visible range are investigated by three-dimensional finite-difference time-domain calculations. As opposed to their silicon PhC counterpart, we find that the formation of nanowire-induced two-dimensional (2D) SiN PhC nanocavities is more challenging because of the low refractive index of SiN. We thus discuss optimization strategies to circumvent such difficulties and we investigate the influence of critical design parameters such as PhC geometry, as well as nanowire geometry and position. We also propose a novel nanowire-induced cavity design based on one-dimensional (1D) nanobeam PhCs. We finally report on nanowire-induced nanocavity designs in 1D (resp. 2D) PhCs presenting quality factors as high as Qc = 5.1 x 104 (resp. Qc = 2.5 x 104 with a mode volume Vm=1.8(λ/nrNW)3 (resp. Vm=5.1(λ/nrNW)3), which show good prospects for light-matter interaction in the near-ultraviolet and visible ranges.

7.
Opt Express ; 24(8): 8647-59, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27137300

ABSTRACT

Here we demonstrate the combination of a semiconductor nanowire and a plasmonic bowtie nanoantenna. A subwavelength InP nanowire was placed precisely in the middle of the nanogap of a gold bowtie nanoantenna with a nanomanipulator installed in a focused ion beam system. We observed a significantly large enhancement (by a factor of 110) of the photoluminescence intensity from this coupled system when the excitation wavelength was at the plasmonic resonance with its polarization parallel to the nanoantenna. Moreover, simulation results revealed that this large enhancement was caused by an interesting interplay between the plasmonic resonance of the nanoantenna and the breakdown of the field suppression effect in the subwavelength nanowire. Our results show that the combination of a nanowire and a nanoantenna gives us a new degree of freedom to design light-matter interactions on a nanoscale.

8.
Opt Express ; 24(4): 3441-50, 2016 Feb 22.
Article in English | MEDLINE | ID: mdl-26907003

ABSTRACT

Buried multiple-quantum-well (MQW) 2D photonic crystal cavities (PhC) achieve low non-radiative recombination and high carrier confinement thus making them highly efficient emitters. In this study, we have investigated the lasing characteristics of high-ß(spontaneous emission coupling factor) buried MQW photonic crystal nanocavity lasers to clarify the theoretically-predicted thresholdless operation in high-ß nanolasers. The strong light and carrier confinement and low non-radiative recombination in our nanolasers have enabled us to clearly demonstrate very smooth lasing transition in terms of the light-in vs light-out curve and cavity linewidth. To clarify the thresholdless lasing behavior, we carried out a lifetime measurement and a photon correlation measurement, which also confirmed the predicted behavior. In addition, we systematically investigated the dependence of ß on the detuning frequency, which was in good agreement with a numerical simulation based on the finite-difference time-domain method. This is the first convincing systematic study of nanolasers based on an MQW close to the thresholdless regime.

9.
Opt Express ; 24(2): 1072-81, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26832491

ABSTRACT

We have observed electron-hole droplet (EHD) emission enhanced by silicon photonic crystal (Si PhC) nanocavities with a surface oxide. The EHD is employed as a massive emitter that remains inside the nanocavity to achieve efficient cavity-emitter coupling. Time-resolved emission measurements demonstrate that the surface oxide greatly reduces the nonradiative annihilation of the EHDs and maintains them in the PhC nanocavities. It is found that the surface-oxidized Si PhC nanocavity enhances EHD emission in addition to the Purcell enhancement of the resonant cavity, which will contribute to works on Si light emission and the cavity quantum electrodynamics of electron-hole condensates.

10.
Opt Express ; 23(23): 30379-92, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26698517

ABSTRACT

An all-optical packet switching using bistable photonic crystal nanocavity memories was demonstrated for the first time. Nanocavity-waveguide coupling systems were configured for 1 × 1, 1 × 2, and 1 × 3 switches for 10-Gb/s optical packet, and they were all operated with an optical bias power of only a few µW. The power is several magnitudes lower than that of previously reported all-optical packet switches incorporating all-optical memories. A theoretical investigation indicated the optimum design for reducing the power consumption even further, and for realizing a higher data-rate capability and higher extinction. A small footprint and integrability are also features of our switches, which make them attractive for constructing an all-optical packet switching subsystem with a view to realizing optical routing on a chip.

11.
Opt Express ; 23(2): 702-8, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25835830

ABSTRACT

We demonstrate the continuous-wave operation of lambda-scale embedded active-region photonic-crystal (LEAP) lasers at room temperature, which we fabricated on a Si wafer. The on-Si LEAP lasers exhibit a threshold current of 31 µA, which is the lowest reported value for any type of semiconductor laser on Si. This reveals the great potential of LEAP lasers as light sources for on- or off-chip optical interconnects with ultra-low power consumption in future information communication technology devices including CMOS processors.

12.
Opt Lett ; 39(19): 5780-3, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25360983

ABSTRACT

We report simple systematic hole-shifting rules applicable to any Lx (x:2,3,4,5,…) nanocavity. The rules specify six sets of holes to be tuned with only two or three shift parameters. While keeping the same cavity wavelength and nearly the same mode volume, the new rule increases the Q factor by nearly one order of magnitude compared with an edge-hole-shifted Lx nanocavity. The Q factor of the high-order mode is also greatly increased. This merit is obvious from the maximum experimental Q factors of over 500,000 at L2 and of over 1,000,000 at L3, L4, and L5 achieved in Si photonic crystals.

13.
Opt Express ; 22(23): 28623-34, 2014 Nov 17.
Article in English | MEDLINE | ID: mdl-25402103

ABSTRACT

We demonstrate a small foot print (600 nm wide) 1D silicon photonic crystal electro-optic modulator operating with only a 50 mV swing voltage and 0.1 fJ/bit switching energy at GHz speeds, which are the lowest values ever reported for a silicon electro-optic modulator. A 3 dB extinction ratio is demonstrated with an ultra-low 50 mV swing voltage with a total device energy consumption of 42.8 fJ/bit, which is dominated by the state holding energy. The total energy consumption is reduced to 14.65 fJ/bit for a 300 mV swing voltage while still keeping the switching energy at less than 2 fJ/bit. Under optimum voltage conditions, the device operates with a maximum speed of 3 Gbps with 8 dB extinction ratio, which rises to 11 dB for a 1 Gbps modulation speed.


Subject(s)
Electricity , Electronics/instrumentation , Optical Devices , Photons , Silicon/chemistry , Crystallization , Electric Capacitance , Numerical Analysis, Computer-Assisted , Signal Processing, Computer-Assisted , Spectrum Analysis , Thermodynamics , Time Factors
14.
Opt Express ; 22(19): 23349-59, 2014 Sep 22.
Article in English | MEDLINE | ID: mdl-25321804

ABSTRACT

We developed a method that can accurately calculate the theoretical quality factor (Q) of a two-dimensional photonic crystal slab nanocavity at a very high speed. Because our method is based on a direct calculation of the out-of-slab radiation loss rate, it does not suffer from in-plane loss, and this allows us to obtain the same Q with 0.18 times less calculation volume. In addition, we can obtain the Q immediately after finishing the cavity excitation, because our method uses only a snapshot of the wavevector space distribution of the resonant mode in contrast to the conventional method, where we need to fit the electro-magnetic field with an exponential decay that requires a relatively long data set. For a width-modulated line defect cavity that has a Q of 8.5 × 10(7) we obtained the same value as with a conventional method but with 94% less computation time.


Subject(s)
Computer Simulation , Computer-Aided Design , Nanotechnology/instrumentation , Optics and Photonics/instrumentation , Photons , Crystallization , Equipment Design
15.
Opt Lett ; 39(8): 2290-3, 2014 Apr 15.
Article in English | MEDLINE | ID: mdl-24978975

ABSTRACT

We investigate the dispersion and transmission properties of slow-light coupled-resonator optical waveguides that consist of more than 100 ultrahigh-Q photonic crystal cavities. We show that experimental group-delay spectra exhibited good agreement with numerically calculated dispersions obtained with the three-dimensional plane wave expansion method. Furthermore, a statistical analysis of the transmission property indicated that fabrication fluctuations in individual cavities are less relevant than in the localized regime. These behaviors are observed for a chain of up to 400 cavities in a bandwidth of 0.44 THz.

16.
Opt Express ; 22(12): 14263-74, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977524

ABSTRACT

Silicon-based photonic crystal nanocavities with different lattice pitches were monolithically integrated with a total length of only 200 µm, and were operated as a multi-channel all-optical switch with a large processing density of 42 Tb/s/mm2. A pump light and a signal light were assigned to two cavity modes in each cavity, and in this way all-optical gate switching was achieved in a 25 channel resonant dip with an energy cost in the femtojoule regime. We also demonstrated a wavelength-division multiplexing operation by selecting three neighboring channels, and thus achieved gate switching without inter-channel optical crosstalk. As far as we know, this was the first demonstration of a many-channel all-optical switch that can handle an optical signal with bit-by-bit Gb/s repetition in an integrated photonic crystal chip.

17.
Sci Rep ; 4: 5040, 2014 May 23.
Article in English | MEDLINE | ID: mdl-24853336

ABSTRACT

Dopants in silicon (Si) have attracted attention in the fields of photonics and quantum optics. However, the optical characteristics are limited by the small spontaneous emission rate of dopants in Si. This study demonstrates a large increase in the spontaneous emission rate of copper isoelectronic centres (Cu-IECs) doped into Si photonic crystal nanocavities. In a cavity with a quality factor (Q) of ~16,000, the photoluminescence (PL) lifetime of the Cu-IECs is 1.1 ns, which is 30 times shorter than the lifetime of a sample without a cavity. The PL decay rate is increased in proportion to Q/Vc (Vc is the cavity mode volume), which indicates the Purcell effect. This is the first demonstration of a cavity-enhanced ultrafast spontaneous emission from dopants in Si, and it may lead to the development of fast and efficient Si light emitters and Si quantum optical devices based on dopants with efficient optical access.


Subject(s)
Copper/chemistry , Light , Nanotechnology/instrumentation , Optical Devices , Optics and Photonics , Photons , Silicon/chemistry , Luminescent Measurements , Nanotechnology/methods
18.
Nat Mater ; 13(3): 279-85, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24553654

ABSTRACT

Subwavelength semiconductor nanowires have recently attracted interest for photonic applications because they possess various unique optical properties and offer great potential for miniaturizing devices. However, realizing tight light confinement or efficient coupling with photonic circuits is not straightforward and remains a challenge. Here we show that a high-Q nanocavity can be created by placing a single III­V semiconductor nanowire with a diameter of under 100 nm in a grooved waveguide in a Si photonic crystal, by means of nanoprobe manipulation. We observe very fast spontaneous emission (91 ps) from nanowires accelerated by the strong Purcell enhancement in nanocavities, which proves that very strong light confinement can be achieved. Furthermore, this system enables us to move the nanocavity anywhere along the waveguide. This configuration provides a significant degree of flexibility in integrated photonics and permits the addition and displacement of various functionalities of III­V nanocavity devices in Si photonic circuits.

19.
Sci Rep ; 4: 3913, 2014 Jan 28.
Article in English | MEDLINE | ID: mdl-24468821

ABSTRACT

We report the first entanglement generation experiment using an on-chip slow light device. With highly efficient spontaneous four-wave mixing enhanced by the slow light effect in a coupled resonator optical waveguide based on a silicon photonic crystal, we generated 1.5-µm-band high-dimensional time-bin entangled photon pairs. We undertook two-photon interference experiments and observed the coincidence fringes with visibilities >74%. The present result enables us to realize an on-chip entanglement source with a very small footprint, which is an essential function for quantum information processing based on integrated quantum photonics.

20.
Nat Commun ; 4: 2725, 2013.
Article in English | MEDLINE | ID: mdl-24217422

ABSTRACT

Integrated quantum optical circuits are now seen as one of the most promising approaches with which to realize single-photon quantum information processing. Many of the core elements for such circuits have been realized, including sources, gates and detectors. However, a significant missing function necessary for photonic quantum information processing on-chip is a buffer, where single photons are stored for a short period of time to facilitate circuit synchronization. Here we report an on-chip single-photon buffer based on coupled resonator optical waveguides (CROW) consisting of 400 high-Q photonic crystal line-defect nanocavities. By using the CROW, a pulsed single photon is successfully buffered for 150 ps with 50-ps tunability while maintaining its non-classical properties. Furthermore, we show that our buffer preserves entanglement by storing and retrieving one photon from a time-bin entangled state. This is a significant step towards an all-optical integrated quantum information processor.

SELECTION OF CITATIONS
SEARCH DETAIL
...