Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Issues Mol Biol ; 44(11): 5691-5699, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36421669

ABSTRACT

The survival rate of root non-vital teeth is lower than that of vital teeth. Therefore, to preserve the dental pulp is very important. The vascular endothelial growth factor (VEGF) is the most potent angiogenic factor involved in the vitality of dental pulp including reparative dentin formation. Caffeic acid phenethyl ester (CAPE) is a physiologically active substance of propolis and has some bioactivities such as anti-inflammatory effects. However, there are no reports on the effects of CAPE on dental pulp inflammation. In this study, we investigated the effects of CAPE on VEGF and inflammatory cytokine production in human dental pulp cells (HDPCs) to apply CAPE to an ideal dental pulp protective agent. We found that CAPE induced VEGF production from HDPCs. Moreover, CAPE induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinases (ERK), and stress-activated protein kinase/c-Jun N-terminal kinase (SAP/JNK) in HDPCs. Furthermore, CAPE inhibited C-X-C motif chemokine ligand 10 (CXCL10) production in Pam3CSK4- and tumor necrosis factor-alpha (TNF-α)-stimulated HDPCs. In conclusion, these results suggest that CAPE might be useful as a novel biological material for vital pulp therapy by exerting the effects of VEGF production and anti-inflammatory activities.

2.
Biomed Res Int ; 2019: 5390720, 2019.
Article in English | MEDLINE | ID: mdl-31930126

ABSTRACT

Caffeic acid phenethyl ester (CAPE), the main component of propolis, has various biological activities including anti-inflammatory effect and wound healing promotion. Odontoblasts located in the outermost layer of dental pulp play crucial roles such as production of growth factors and formation of hard tissue termed reparative dentin in host defense against dental caries. In this study, we investigated the effects of CAPE on the upregulation of vascular endothelial growth factor (VEGF) and calcification activities of odontoblasts, leading to development of novel therapy for dental pulp inflammation caused by dental caries. CAPE significantly induced mRNA expression and production of VEGF in rat clonal odontoblast-like KN-3 cells cultured in normal medium or osteogenic induction medium. CAPE treatment enhanced nuclear factor-kappa B (NF-κB) transcription factor activation, and furthermore, the specific inhibitor of NF-κB significantly reduced VEGF production. The expression of VEGF receptor- (VEGFR-) 2, not VEGFR-1, was up regulated in KN-3 cells treated with CAPE. In addition, VEGF significantly increased mineralization activity in KN-3 cells. These findings suggest that CAPE might be useful as a novel biological material for the dental pulp conservative therapy.


Subject(s)
Caffeic Acids/pharmacology , Odontoblasts/drug effects , Phenylethyl Alcohol/analogs & derivatives , Vascular Endothelial Growth Factor A/metabolism , Animals , Apoptosis/drug effects , Cell Line , Dental Caries/metabolism , Dental Pulp Calcification/metabolism , I-kappa B Proteins/metabolism , Inflammation/metabolism , NF-kappa B/metabolism , Odontoblasts/metabolism , Phenylethyl Alcohol/pharmacology , Propolis/metabolism , Rats , Transcriptional Activation/drug effects
3.
Jpn Dent Sci Rev ; 54(3): 105-117, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30128058

ABSTRACT

Odontoblasts located in the outermost layer of dental pulp form a natural barrier between mineralized tissues, dentin, and soft tissues, dental pulp, of the vital tooth, and they first recognize caries-related pathogens and sense external irritations. Therefore, odontoblasts possess a specialized innate immune system to fight oral pathogens invading into dentin. Generally, the rapid initial sensing of microbial pathogens, especially pathogen-associated molecular patterns (PAMPs) shared by microorganisms, are mediated by pattern recognition receptors (PRRs), such as Toll-like receptor and the nucleotide-binding oligomerization domain (NOD). The innate immune responses in odontoblasts initiated by sensing oral pathogens provide host protective events, such as inflammatory reactions, to produce a variety of pro-inflammatory mediators, including chemokines and cytokines. These attract various inflammatory cells and cause antibacterial reactions, such as the production of defensins, to kill microorganisms in the proximal region of the odontoblast layer. This review focuses on innate immunity, especially cellular and molecular mechanisms regarding the sensing of PAMPs from oral pathogens by PRRs, in odontoblasts and provides information for future studies for the development of novel therapeutic strategies, including diagnosis and treatment, to prevent exceeding dental pulp inflammation and preserve the dental pulp tissues.

SELECTION OF CITATIONS
SEARCH DETAIL
...