Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
R Soc Open Sci ; 9(7): 220227, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35875470

ABSTRACT

Solid oxide fuel cells (SOFCs) directly fed with iso-octane are expected to be power sources for mobile devices and automobiles. However, the conventional anode catalysts nickel (Ni) or cerium oxide (CeO2) used for direct feeding of iso-octane do not suppress carbon deposition or generate high power. In this study, we investigated the Ni-CeO2/Ni/Ni-yttria-stabilized-zirconia (YSZ) three-layer anode to establish the suppression of carbon deposition and high-power generation in the SOFC. The anode consists of a Ni-CeO2 catalyst layer as the top layer, an Ni catalyst layer as the second layer, and a Ni-YSZ catalyst layer as the third layer on top of the electrolyte. The concept of the three-layer anode is as follows: fuel reforming occurs in the Ni-CeO2 layer, the reformed H2 or CO is electrochemically oxidized in the Ni-YSZ catalyst layer, and the Ni catalyst middle layer prevents the reaction between YSZ and CeO2. Scanning electron microscopy and electrochemical characterization confirmed carbon deposition suppression and improved power generation. The anode showed no carbon deposition and generated high-power, 600 mA cm-2 and 150 mW cm-2, at 950°C and a steam/carbon ratio of 3.0. Additionally, we discuss the fuel reforming reactions on the three-layer electrode by the results of exhaust gas analysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...