Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Med Okayama ; 66(5): 409-15, 2012.
Article in English | MEDLINE | ID: mdl-23093059

ABSTRACT

The human femur is subjected to an impulsive load at its distal end during daily life. Femoral bone fracture caused by impact loading is common in elderly women. It is important to clarify the dynamic response of the femur and to evaluate the change in its stress state during impact loading. A 3-dimensional model of the femur was prepared in the present study, and the impulsive stress waves propagating from the distal end of the femur were analyzed by the dynamic finite element method. This model showed that the von Mises equivalent stress is large on the anterior and posterior sides of the mid-diaphysis when the impact direction is different from that of the bone axis. As for the femoral neck, the absolute value of minimum principal stress initially increases on the medial side;slightly later the maximum principal stress increases on the lateral side. In this case, the absolute value of the maximum principal stress was found to be larger than that of the minimum principal stress, and the absolute value of the principal stress decreased as the impact angle increased. Further, the femoral neck and the trochanter were shown to have a higher risk of bone fracture when the impact direction is coincident with the bone axis.


Subject(s)
Femur/physiology , Finite Element Analysis , Adult , Femoral Fractures/etiology , Humans , Male , Stress, Mechanical , Tensile Strength
2.
J Spinal Disord Tech ; 20(6): 462-7, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17970188

ABSTRACT

STUDY DESIGN: A human cadaveric biomechanical study of fixation strength of an improved novel pedicle screw (NPS) with cement and a conventional screw. OBJECTIVE: To clarify whether the NPS has adequate fixation strength without leakage in vertebrae with low bone quality. SUMMARY OF BACKGROUND DATA: The fixation strength of pedicle screws decreases in frail spines of elderly osteoporotic patients. Augmentation of screw fixation with bone cement must be balanced against increased difficulty of screw removal and risk of cement leakage. We developed the NPS consisting of an internal screw and an outer sheath to mitigate the disadvantages of cement augmentation. METHODS: The T12 and L1 vertebrae obtained from 18 formalin preserved cadavers (11 males and 7 females; mean age, 82.7 y) were used. The mean bone mineral density was 0.39 +/- 0.14 g/cm2. The NPS was inserted into one pedicle of each vertebra and the control screw, a Compact CD2 screw, was inserted into the contralateral pedicle. Both screws were 6mm in diameter and 40 mm in length. Pull-out tests were performed at a crosshead speed of 10 mm/min. Cyclic loading tests were performed with a maximum 250 N load at 2 Hz until 30,000 cycles. RESULTS: Cement leakage did not occur in any of the specimens tested. The mean maximum force at pull-out was 760 +/- 344 N for the NPS and 346 +/- 172N for the control screw (P < 0.01). Loosening of 50% of the screws was observed after 17,000 cycles of the NPS and after 30 cycles of the control screw. The hazard ratio of loosening was 19.6 (95% confidence interval 19.3-19.9) (P < 0.001). CONCLUSIONS: The NPS showed a significantly higher mechanical strength than the control screw in both pull-out tests and cyclic loading tests. The NPS showed more than adequate strength without cement leakage.


Subject(s)
Bone Cements/therapeutic use , Bone Screws , Internal Fixators , Lumbar Vertebrae/surgery , Spinal Fusion/instrumentation , Spinal Fusion/methods , Thoracic Vertebrae/surgery , Aged , Aged, 80 and over , Cadaver , Equipment Design , Equipment Failure Analysis , Female , Humans , Lumbar Vertebrae/physiopathology , Male , Thoracic Vertebrae/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...