Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropathol Appl Neurobiol ; 47(5): 611-624, 2021 08.
Article in English | MEDLINE | ID: mdl-33341972

ABSTRACT

AIMS: Previous work in our lab has identified the protease kallikrein-8 (KLK8) as a potential upstream mover in the pathogenesis of Alzheimer's disease (AD). We showed pathologically elevated levels of KLK8 in the cerebrospinal fluid and blood of patients with mild cognitive impairment or dementia due to AD, and in brains of patients and transgenic CRND8 (TgCRND8) mice in incipient stages of the disease. Furthermore, short-term antibody-mediated KLK8 inhibition in moderate stage disease alleviated AD pathology in female mice. However, it remains to be shown whether long-term reversal of KLK8 overexpression can also counteract AD. Therefore, the effects of genetic Klk8-knockdown were determined in TgCRND8 mice. METHODS: The effects of heterozygous ablation of murine Klk8 (mKlk8) gene on AD pathology of both sexes were examined by crossbreeding TgCRND8 [hAPP+/-] with mKlk8-knockdown [mKlk8+/-] mice resulting in animals with or without AD pathology which revealed pathologically elevated or normal KLK8 levels. RESULTS: mKlk8-knockdown had negligible effects on wildtype animals but led to significant decline of amyloid beta (Aß) and tau pathology as well as an improvement of structural neuroplasticity in a sex-specific manner in transgenics. These changes were mediated by a shift to non-amyloidogenic cleavage of the human amyloid precursor protein (APP), recovery of the neurovascular unit and maintaining microglial metabolic fitness. Mechanistically, Klk8-knockdown improved Aß phagocytosis in primary glia and Aß resistance in primary neurons. Most importantly, transgenic mice revealed less anxiety and a better memory performance. CONCLUSIONS: These results reinforce the potential of KLK8 as a therapeutic target in AD.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/pathology , Kallikreins/genetics , Sex Factors , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Animals , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Disease Models, Animal , Mice, Transgenic , Microglia/pathology , Neurons/pathology
2.
Brain Pathol ; 28(6): 947-964, 2018 11.
Article in English | MEDLINE | ID: mdl-29505099

ABSTRACT

Women seem to have a higher vulnerability to Alzheimer's disease (AD), but the underlying mechanisms of this sex dichotomy are not well understood. Here, we first determined the influence of sex on various aspects of Alzheimer's pathology in transgenic CRND8 mice. We demonstrate that beta-amyloid (Aß) plaque burden starts to be more severe around P180 (moderate disease stage) in female transgenics when compared to males and that aging aggravates this sex-specific difference. Furthermore, we show that female transgenics suffer from higher levels of neurovascular dysfunction around P180, resulting in impaired Aß peptide clearance across the blood-brain-barrier at P360. Female transgenics show also higher levels of diffuse microgliosis and inflammation, but the density of microglial cells surrounding Aß plaques is less in females. In line with this finding, testosterone compared to estradiol was able to improve microglial viability and Aß clearance in vitro. The spatial memory of transgenics was in general poorer than in wildtypes and at P360 worse in females irrespective of their genotype. This difference was accompanied by a slightly diminished dendritic complexity in females. While all the above-named sex-differences emerged after the onset of Aß pathology, kallikrein-8 (KLK8) protease levels were, as an exception, higher in female than in male brains very early when virtually no plaques were detectable. In a second step, we quantified cerebral KLK8 levels in AD patients and healthy controls, and could ascertain, similar to mice, higher KLK8 levels not only in AD-affected but also in healthy brains of women. Accordingly, we could demonstrate that estradiol but not testosterone induces KLK8 synthesis in neuronal and microglial cells. In conclusion, multiple features of AD are more pronounced in females. Here, we show for the first time that this sex-specific difference may be meditated by estrogen-induced KLK8 overproduction long before AD pathology emerges.


Subject(s)
Alzheimer Disease/enzymology , Alzheimer Disease/epidemiology , Brain/enzymology , Kallikreins/metabolism , Age Factors , Aged , Aged, 80 and over , Alzheimer Disease/drug therapy , Alzheimer Disease/psychology , Animals , Cell Line , Cell Survival/drug effects , Estradiol/pharmacology , Estradiol/therapeutic use , Female , Humans , Kallikreins/biosynthesis , Male , Mice , Mice, Transgenic , Microglia/drug effects , Microglia/enzymology , Neurons/drug effects , Neurons/enzymology , Plaque, Amyloid/pathology , Risk Factors , Sex Factors , Spatial Memory , Testosterone/pharmacology , Testosterone/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...