Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Orig Life Evol Biosph ; 28(4-6): 425-48, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9742724

ABSTRACT

Two-step laser desorption/laser ionization mass spectrometry (microL2 MS) was used to establish the nature and mass distribution of polycyclic aromatic hydrocarbons (PAHs) in fragments of fifteen 'giant' (approximately 200 microns) carbonaceous Antarctic micrometeorites (AMMs). Detectable concentrations of PAHs were observed in all AMMs showing a fine-grained matrix. The range of integrated PAH signal intensities varied between samples by over two orders of magnitude. No evidence of contamination whilst in the Antarctic environment could be found. The dramatic variation of both PAH signal intensities and mass distributions between AMMs along with comprehensive contamination checks demonstrates that particles are not exposed to terrestrial PAHs at or above detection limits, either subsequent, during or prior to collection. Comparison of the observed PAH distributions with those measured in three carbonaceous chondrites [Orgueil (CI1), Murchison (CM2) and Allende (CV3)] under identical conditions demonstrated that marked differences exist in the trace organic composition of these two sources of extraterrestrial matter. In general, AMMs show a far richer distribution of unalkylated 'parent' PAHs with more extended alkylation series (replacement of -H with -(CH2)n-H; n = 1, 2, 3 ...). The degree of alkylation loosely correlates with a metamorphic index that represents the extent of frictional heating incurred during atmospheric entry. A search for possible effects of the chemical composition of the fine-grain matrix of host particles on the observed PAH distributions reveals that high degrees of alkylation are associated with high Na/Si ratios. These results, in addition to other observations by Maurette, indicate that 'giant' micrometeorites survive hypervelocity (> or = 11 km s-1) atmospheric entry unexpectedly well. Because such micrometeorites are believed to represent the dominant mass fraction of extraterrestrial material accreted by the Earth, they may have played a significant role in the prebiotic chemical evolution of the early Earth through the delivery of complex organic matter to the surface of the planet.


Subject(s)
Meteoroids , Polycyclic Aromatic Hydrocarbons/analysis , Antarctic Regions , Earth, Planet , Evolution, Chemical , Extraterrestrial Environment , Microscopy, Electron, Scanning , Origin of Life , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
2.
Biol Sci Space ; 12(2): 119-23, 1998 Jun.
Article in English | MEDLINE | ID: mdl-11541878

ABSTRACT

A multi-user integrated suite of instruments designed to optimize the search for evidence of life on Mars is described. The package includes: -Surface inspection and surface environment analysis to identify the potential Mars landing sites, to inspect the surface geology and mineralogy, to search for visible surficial microbial macrofossils, to study the surface radiation budget and surface oxidation processes, to search for niches for extant life. -Subsurface sample acquisition by core drilling -Analysis of surface and subsurface minerals and organics to characterize the surface mineralogy, to analyse the surface and subsurface oxidants, to analyse the mineralogy of subsurface aliquots, to analyse the organics present in the subsurface aliquots (elemental and molecular composition, isotopes, chirality). -Macroscopic and microscopic inspection of subsurface aliquots to search for life's indicators (paleontological, biological, mineralogical) and to characterize the mineralogy of the subsurface aliquots. The study is led by ESA Manned Spaceflight and Microgravity Directorate.


Subject(s)
Exobiology/organization & administration , Geologic Sediments/analysis , Mars , Space Flight/organization & administration , Europe , Evolution, Chemical , Evolution, Planetary , Exobiology/instrumentation , Extraterrestrial Environment , Fossils , International Agencies , Space Flight/instrumentation , Specimen Handling
3.
Adv Space Res ; 15(3): 113-26, 1995 Mar.
Article in English | MEDLINE | ID: mdl-11539212

ABSTRACT

"Interplanetary Dust Particles" with sizes approximately 10 micrometers collected in the stratosphere (IDPs), as well as much larger "giant" micrometeorites retrieved from Antarctic ice melt water (AMMs), are mostly composed of unequilibrated assemblages of minerals, thus being related to primitive unequilibrated meteorites. Two independent evaluations of the mass flux of micrometeorites measuring approximately 50 micrometers to approximately 200 micrometers, recovered from either the Greenland or the Antarctic ice sheets have been reported (approximately 20,000 tons/a). A comparison with recent evaluation of the flux of meteorites reaching the Earth's surface (up to masses of 10,000 tons), indicates that micrometeorites represent about 99.5% of the extraterrestrial material falling on the Earth's surface each year. As they show carbon concentrations exceeding that of the most C-rich meteorite (Orgueil), they are the major contributors of extraterrestrial C-rich matter accreting to the Earth today. Moreover they are complex microstructured aggregates of grains. They contain not only a variety of C-rich matter, such as a new "dirty" magnetite phase enriched in P, S, and minor elements, but also a diversity of potential catalysts (hydrous silicates, oxides, sulfides and metal grains of Fe/Ni composition, etc.). They could have individually functioned on the early Earth, as "micro-chondritic-reactors" for the processing of prebiotic organic molecules in liquid water. Future progress requires the challenging development of meaningful laboratory simulation experiments, and a better understanding of the partial reprocessing of micrometeorites in the atmosphere.


Subject(s)
Earth, Planet , Evolution, Chemical , Meteoroids , Antarctic Regions , Atmosphere , Carbon/analysis , Carbon/chemistry , Chemistry Techniques, Analytical/methods , Exobiology , Ferrosoferric Oxide , Iron/analysis , Minerals/analysis , Neon/analysis , Oxides/analysis , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...