Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-35310027

ABSTRACT

This study aimed at evaluating whether high-oleic peanuts (with skin), which are rich in oleic acid, could serve as an energy substrate for prolonged exercise and improve endurance performance. We evaluated changes in blood biomarker (triglycerides, free fatty acid (FFA), biological antioxidant potential (BAP), malondialdehyde-modified low-density lipoprotein (MDA-LDL), and serum total protein) levels at 2-h intervals for 6 h after the ingestion of 10 g and 30 g of peanuts. The results were used to determine the timing of peanut ingestion before the endurance performance test. As a result, there was a significant change in the 30-g peanut-ingested condition, and lipid levels increased 2 h after the ingestion of 30 g of peanuts. Accordingly, the endurance performance test was conducted 2 h after ingesting 30 g of peanuts. The endurance performance test involved 70 min of pedaling exercise. We measured pre- and postexercise levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is a biomarker of oxidative stress. There was a significantly improved workload in the endurance performance test in the high-oleic peanut-ingested condition than in the control condition. Furthermore, the rate of increase in 8-OHdG was significantly lower in the high-oleic peanut-ingested condition than in the control condition. This suggests that the increase in FFA levels resulting from the ingestion of high-oleic peanuts and the inherent antioxidant effects of peanuts improved the workload during endurance exercise.

2.
Nutrients ; 12(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187266

ABSTRACT

In many previous studies, the preventive effects of peanut against aging and cognitive impairment have often been unclear, so to clarify the effects we first investigated effective markers for evaluating its effects in the hippocampus of senescence-accelerated mouse prone/8 (SAMP8) mice, mainly using proteomics. The effects of dietary high-oleic peanuts on the hair appearance of SAMP8, the expression of effective markers in the hippocampus, and the TBARS and amino acid contents of the hippocampus were examined. Hippocampus solute carrier family 1 (glial high-affinity glutamate transporter), calcium/calmodulin-dependent protein kinase type II, and sodium- and chloride-dependent GABA transporter, which all are considered to be closely related to glutamic acid concentration were decreased by feeding of the samples, and the GABA/glutamic acid ratio in the hippocampus was increased by feeding with the samples. The formation of glial fibrillary acidic protein and synapsin-2, which showed higher levels in the SAMP8 than in SAMR1, and the protein expression of tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein and dihydropteridine reductase, which are considered to be related to the formation of adrenergic neuron transmitters, were reduced by the feeding of peanuts and their germ-rich fraction. Ferulic acid, as an ester and minor component in peanuts, could be partly connected to the effect of peanuts. These results indicate that high-oleic peanuts and their germ-rich fraction can protect against aging and cognitive impairment by regulating protein expression, which could be measured by the proteomics of the above hippocampus proteins of SAMP8 and the hippocampal GABA/glutamic acid ratio.


Subject(s)
Aging/metabolism , Arachis/metabolism , Cognitive Dysfunction/prevention & control , Hippocampus/metabolism , Oleic Acid/administration & dosage , Animals , Biomarkers/metabolism , Cognitive Dysfunction/metabolism , Diet , Disease Models, Animal , Energy Intake , Glial Fibrillary Acidic Protein/metabolism , Mice , Oleic Acid/metabolism , Synapsins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...