Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Med Biol ; 21(1): e12482, 2022.
Article in English | MEDLINE | ID: mdl-36310655

ABSTRACT

Purpose: In humans, catecholamines (including dopamine) have been identified in semen and fallopian tubes, while dopamine D2 receptors (D2DR) are found in the sperm midpiece region. How dopamine dose affects human sperm function and whether dopamine treatment is useful in assisted reproductive technology is unclear. Methods: Sperm samples were obtained from patients with normal semen parameters undergoing fertility treatment. We investigated the effects of dopamine treatment on tyrosine phosphorylation and sperm motility. Sperm motility was analyzed using the computer-assisted sperm analysis (CASA) system. Results: This study revealed that various dopamine concentrations (0.1-100 µM) did not increase sperm tyrosine phosphorylation. Progressive motility increased substantially when treated with high concentrations of dopamine (10 and 100 µM) and was blocked by raclopride (a D2DR antagonist). After 24-h sperm culture, the addition of 10 µM dopamine significantly increased curvilinear velocity and amplitude of lateral head displacement, which are indicators of hyperactivation. Conclusion: Dopamine did not affect tyrosine phosphorylation, but increased sperm motility. High concentrations of dopamine were more effective to accelerate sperm motility in cases where sperm motile capacity was low.

2.
Anim Sci J ; 93(1): e13744, 2022.
Article in English | MEDLINE | ID: mdl-35699686

ABSTRACT

The widely used porcine artificial insemination procedure involves the use of liquid-stored semen because it is difficult to control the quality of frozen-thawed porcine sperm. Therefore, there is a high demand for porcine semen. The control and enhancement of sperm function are required for the efficient reproduction of pigs. We previously reported that gamma-aminobutyric acid (GABA) enhanced sperm capacitation and acrosome reaction in mice. In this study, we demonstrated the presence of GABAA receptors in porcine sperm acrosome. Furthermore, we investigated the GABA effects on porcine sperm function. We did not detect any marked effect of GABA on sperm motility and tyrosine phosphorylation of sperm proteins. However, GABA promoted acrosome reaction, which was suppressed by a selective GABAA receptor antagonist. GABA binds to GABAA receptors, resulting in chloride ion influx. We found that treatment with 1 µM GABA increased the intracellular concentration of chloride ion in the sperm. In addition, the GABA concentration effective in the acrosome reaction was correlated with the porcine sperm concentration. These results indicate that GABA and its receptors can act as modulators of acrosome reaction. This study is the first to report the effects of GABA on porcine sperm function.


Subject(s)
Acrosome Reaction , Sperm Motility , Acrosome/physiology , Animals , Chlorides/pharmacology , Male , Mice , Spermatozoa/physiology , Swine , gamma-Aminobutyric Acid/pharmacology
3.
Biochem Biophys Res Commun ; 562: 105-111, 2021 07 12.
Article in English | MEDLINE | ID: mdl-34049203

ABSTRACT

Sperm head-to-head agglutination is a well-known known phenomenon in mammalian and non-mammalian species. Although several factors have been reported to induce sperm agglutination, information on the trigger and process of sperm detachment from the agglutination is scarce. Since hyperactivated motility is involved in bovine sperm detachment from the oviduct, we focused on caffeine, a well-known hyperactivation inducer, and aimed to determine the role of caffeine in sperm detachment from agglutination. Agglutination rate of bovine sperm was significantly decreased upon incubation with caffeine following pre-incubation without caffeine. Additionally, we observed that bovine sperm were detached from agglutination only when the medium contained caffeine. The detached sperm showed more asymmetrical flagellar beating compared to the undetached motile sperm, regardless of whether before or after the detachment. Intriguingly, some sperm that detached from agglutination re-agglutinated with different sperm agglutination. These findings indicated caffeine as a trigger for sperm detachment from the agglutination in bull. Furthermore, another well-known hyperactivation inducer, thimerosal, also significantly reduced the sperm agglutination rate. Overall, the study demonstrated the complete process of sperm detachment from sperm head-to-head agglutination and proposed that hyperactivated motility facilitates sperm detachment from another sperm. These findings would provide a better understanding of sperm physiology and fertilization process in mammals.


Subject(s)
Caffeine/pharmacology , Sperm Agglutination/drug effects , Sperm Head/drug effects , Spermatozoa/drug effects , Spermatozoa/physiology , Animals , Cattle , Male , Progesterone/pharmacology , Thimerosal/pharmacology
4.
Cells ; 9(8)2020 08 09.
Article in English | MEDLINE | ID: mdl-32784858

ABSTRACT

Although sperm head-to-head agglutination has been reported in many mammalian species, the biological significance of this unique sperm-sperm interaction remains largely unknown. Here, we aimed to examine the functional characteristics of agglutinated bovine sperm to determine the possible role of sperm agglutination in the fertilization process. We initially examined temporal changes to the degree of head-to-head agglutination in culture, and found that bovine sperm agglutinated despite the lack of sperm agglutination inducers in medium. Sperm viability and motility were evaluated by SYBR14/PI and JC-1 staining, respectively, to identify the relationship between sperm agglutination and fertilizing ability. Agglutinated sperm had increased motility, viability, and intact mitochondrial function compared with unagglutinated sperm. Furthermore, we found that heparin significantly increased the percentage of unagglutinated sperm, but did not affect viability of both agglutinated and unagglutinated sperm, suggesting that sperm agglutination dictated the viability. In conclusion, agglutinated bovine sperm maintained viability and motility for a longer time than unagglutinated sperm. Thus, we propose that the head-to-head agglutination is a crucial sperm-sperm interaction to ensure the fertilizing ability of sperm.


Subject(s)
Heparin/pharmacology , Sperm Agglutination/drug effects , Sperm Head/immunology , Animals , Cattle , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Male , Membrane Potential, Mitochondrial/immunology , Mitochondria/immunology , Sperm Motility/immunology
5.
J Reprod Dev ; 65(4): 327-334, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31178551

ABSTRACT

In mammals, ejaculated sperm acquire their fertilizing ability during migration through the female reproductive tract, which secretes several factors that contribute to sperm capacitation. Gamma-aminobutyric acid (GABA) is a well-known neurotransmitter in the central nervous system, but additionally enhances the sperm acrosome reaction in the rat and cow. However, the detailed effects of GABA concentration on sperm function remain unclear. In this study, we detected the presence of the GABA type A receptor (GABA A) in mouse epididymal sperm by western blot analysis and in the sperm acrosome by immunocytochemistry. We also investigated the effects of GABA on sperm fertilizing ability. We found that GABA facilitated the tyrosine phosphorylation of sperm proteins, which is an index of sperm capacitation. GABA also promoted the acrosome reaction, which was suppressed by a selective GABA A receptor antagonist. We then found that the effective GABA concentration for the acrosome reaction corresponds to sperm concentration, but we did not detect any marked effect of GABA on sperm motility using a computer-assisted sperm analysis system. Using immunohistochemistry, we also detected GABA expression in the epithelia of the mouse uterus and oviduct. Furthermore, we found that the mRNA levels of glutamate decarboxylase (Gad), which generates GABA from L-glutamate, were higher in the oviduct than in the uterus, and that Gad mRNA levels were higher at estrus than at the diestrus stage. These results indicate that the GABA concentration can act as a modulator of the acrosome reaction and sperm capacitation in the female reproductive tract.


Subject(s)
Sperm Capacitation/drug effects , gamma-Aminobutyric Acid/pharmacology , Acrosome Reaction/drug effects , Animals , Female , Fertilization/drug effects , Male , Mice , Mice, Inbred C57BL , Semen Analysis , Sperm Motility/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...