Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomed Opt ; 24(3): 1-8, 2018 10.
Article in English | MEDLINE | ID: mdl-30378349

ABSTRACT

Monitoring oxygen saturation (SO2) in microcirculation is effective for understanding disease dynamics. We have developed an SO2 estimation method, sidestream dark-field (SDF) oximetry, based on SDF imaging. SDF imaging is a noninvasive and clinically applicable technique to observe microcirculation. We report the first in vivo experiment observing the changes in SO2 of microcirculation using SDF oximetry. First, heat from the light-emitting diodes used for the SDF imaging might affect hemodynamics in microcirculation, hence, we performed an experiment to evaluate the influence of that on the SDF oximetry. The result suggested that SDF oximetry had enough stability for long-term experiments. Then, to evaluate the sensitivity of SDF oximetry to alterations in the hemodynamics of the microcirculation, we observed the time-lapsed SO2 changes in the dermis microcirculation of rats under hypoxic stimulation. We confirmed that the SO2 estimated by SDF oximetry was in accordance with changes in the fraction of inspired oxygen (FiO2). Thus, SDF oximetry is considered to be able to observe SO2 changes that occur in accordance with alteration of the microcirculation.


Subject(s)
Dermis/physiology , Microcirculation/physiology , Oximetry/methods , Oxygen/metabolism , Animals , Hypoxia/physiopathology , Microscopy, Video/methods , Rats
2.
Biomed Opt Express ; 6(5): 1616-31, 2015 May 01.
Article in English | MEDLINE | ID: mdl-26137368

ABSTRACT

We investigate the possibility of oxygen saturation estimation from images obtained by the sidestream dark-field (SDF) technique. The SDF technique is a method for microvascular imaging. In SDF imaging, light enters a tissue directly from illumination sources configured around a camera and then the camera captures the light scattered by the tissue. To advance the capability of the SDF imaging system, we develop a SDF oximetry method with LED illumination sources. In this paper, we evaluate some SDF oximetry methods from virtual SDF images obtained by the Monte Carlo photon propagation simulation. As a result, we verify that SDF imaging allows the estimation of oxygen saturation of the individual vessels from virtual images using the average extinction coefficients considering the bandwidth of the illumination and the effect of the integration of the camera.

SELECTION OF CITATIONS
SEARCH DETAIL
...