Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioconjug Chem ; 34(6): 1130-1138, 2023 06 21.
Article in English | MEDLINE | ID: mdl-37220065

ABSTRACT

Targeted modification of endogenous proteins without genetic manipulation of protein expression machinery has a range of applications from chemical biology to drug discovery. Despite being demonstrated to be effective in various applications, target-specific protein labeling using ligand-directed strategies is limited by stringent amino acid selectivity. Here, we present highly reactive ligand-directed triggerable Michael acceptors (LD-TMAcs) that feature rapid protein labeling. Unlike previous approaches, the unique reactivity of LD-TMAcs enables multiple modifications on a single target protein, effectively mapping the ligand binding site. This capability is attributed to the tunable reactivity of TMAcs that enable the labeling of several amino acid functionalities via a binding-induced increase in local concentration while remaining fully dormant in the absence of protein binding. We demonstrate the target selectivity of these molecules in cell lysates using carbonic anhydrase as the model protein. Furthermore, we demonstrate the utility of this method by selectively labeling membrane-bound carbonic anhydrase XII in live cells. We envision that the unique features of LD-TMAcs will find use in target identification, investigation of binding/allosteric sites, and studying membrane proteins.


Subject(s)
Amino Acids , Membrane Proteins , Ligands , Binding Sites , Protein Binding
2.
Nano Lett ; 20(5): 4014-4021, 2020 05 13.
Article in English | MEDLINE | ID: mdl-32298126

ABSTRACT

Intracellular delivery of functional proteins is a promising, but challenging, strategy for many therapeutic applications. Here, we report a new methodology that overcomes drawbacks of traditional mesoporous silica (MSi) particles for protein delivery. We hypothesize that engineering enhancement in interactions between proteins and delivery vehicles can facilitate efficient encapsulation and intracellular delivery. In this strategy, surface lysines in proteins were modified with a self-immolative linker containing a terminal boronic acid for stimulus-induced reversibility in functionalization. The boronic acid moiety serves to efficiently interact with amine-functionalized MSi through dative and electrostatic interactions. We show that proteins of different sizes and isoelectric points can be quantitatively encapsulated into MSi, even at low protein concentrations. We also show that the proteins can be efficiently delivered into cells with retention of activity. Utility of this approach is further demonstrated with gene editing in cells, through the delivery of a CRISPR/Cas9 complex.


Subject(s)
Drug Delivery Systems , Gene Editing , Proteins , Silicon Dioxide , Boronic Acids , Static Electricity
SELECTION OF CITATIONS
SEARCH DETAIL
...