Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(23): 16105-16111, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38829312

ABSTRACT

In this work, we develop a twist-dependent electrochemical activity map, combining a low-energy continuum electronic structure model with modified Marcus-Hush-Chidsey kinetics in trilayer graphene. We identify a counterintuitive rate enhancement region spanning the magic angle curve and incommensurate twists in the system geometry. We find a broad activity peak with a ruthenium hexamine redox couple in regions corresponding to both magic angles and incommensurate angles, a result qualitatively distinct from the twisted bilayer case. Flat bands and incommensurability offer new avenues for reaction rate enhancements in electrochemical transformations.

2.
J Phys Chem Lett ; 14(35): 7802-7807, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37616522

ABSTRACT

Accurate models of electrochemical kinetics at electrode-electrolyte interfaces are crucial to understanding the high-rate behavior of energy storage devices. Phase transformation of electrodes is typically treated under equilibrium thermodynamic conditions, while realistic operation is at finite rates. Analyzing phase transformations under nonequilibrium conditions requires integrating nonlinear electrochemical kinetic models with thermodynamic models. This had only previously been demonstrated for Butler-Volmer kinetics, where it can be done analytically. In this work, we develop a software package capable of the efficient numerical inversion of rate relationships for general kinetic models. We demonstrate building nonequilibrium phase maps, including for models such as Marcus-Hush-Chidsey that require computation of an integral, and also discuss the impact of a variety of assumptions and model parameters, particularly on high-rate phase behavior. Even for a fixed set of parameters, the magnitude of the critical current can vary by more than a factor of 2 among kinetic models.

4.
J Chem Phys ; 153(13): 134706, 2020 Oct 07.
Article in English | MEDLINE | ID: mdl-33032420

ABSTRACT

Electrochemical kinetics at electrode-electrolyte interfaces limit the performance of devices including fuel cells and batteries. While the importance of moving beyond Butler-Volmer kinetics and incorporating the effect of electronic density of states of the electrode has been recognized, a unified framework that incorporates these aspects directly into electrochemical performance models is still lacking. In this work, we explicitly account for the density functional theory-calculated density of states numerically in calculating electrochemical reaction rates for a variety of electrode-electrolyte interfaces. We first show the utility of this for two cases related to Li metal electrodeposition and stripping on a Li surface and a Cu surface (anode-free configuration). The deviation in reaction rates is minor for cases with flat densities of states such as Li, but is significant for Cu due to nondispersive d-bands creating large variation. Finally, we consider a semiconducting case of a solid-electrolyte interphase consisting of LiF and Li2CO3 and note the importance of the Fermi level at the interface pinned by the redox reaction occurring there. We identify the asymmetry in reaction rates as a function of discharge/charge naturally within this approach.

5.
Adv Mater ; 29(36)2017 Sep.
Article in English | MEDLINE | ID: mdl-28715091

ABSTRACT

Bismuth-based compounds have recently gained increasing attention as potentially nontoxic and defect-tolerant solar absorbers. However, many of the new materials recently investigated show limited photovoltaic performance. Herein, one such compound is explored in detail through theory and experiment: bismuth oxyiodide (BiOI). BiOI thin films are grown by chemical vapor transport and found to maintain the same tetragonal phase in ambient air for at least 197 d. The computations suggest BiOI to be tolerant to antisite and vacancy defects. All-inorganic solar cells (ITO|NiOx |BiOI|ZnO|Al) with negligible hysteresis and up to 80% external quantum efficiency under select monochromatic excitation are demonstrated. The short-circuit current densities and power conversion efficiencies under AM 1.5G illumination are nearly double those of previously reported BiOI solar cells, as well as other bismuth halide and chalcohalide photovoltaics recently explored by many groups. Through a detailed loss analysis using optical characterization, photoemission spectroscopy, and device modeling, direction for future improvements in efficiency is provided. This work demonstrates that BiOI, previously considered to be a poor photocatalyst, is promising for photovoltaics.

6.
ACS Nano ; 11(7): 7101-7109, 2017 07 25.
Article in English | MEDLINE | ID: mdl-28657723

ABSTRACT

The relationship between charge-carrier lifetime and the tolerance of lead halide perovskite (LHP) solar cells to intrinsic point defects has drawn much attention by helping to explain rapid improvements in device efficiencies. However, little is known about how charge-carrier lifetime and solar cell performance in LHPs are affected by extrinsic defects (i.e., impurities), including those that are common in manufacturing environments and known to introduce deep levels in other semiconductors. Here, we evaluate the tolerance of LHP solar cells to iron introduced via intentional contamination of the feedstock and examine the root causes of the resulting efficiency losses. We find that comparable efficiency losses occur in LHPs at feedstock iron concentrations approximately 100 times higher than those in p-type silicon devices. Photoluminescence measurements correlate iron concentration with nonradiative recombination, which we attribute to the presence of deep-level iron interstitials, as calculated from first-principles, as well as iron-rich particles detected by synchrotron-based X-ray fluorescence microscopy. At moderate contamination levels, we witness prominent recovery of device efficiencies to near-baseline values after biasing at 1.4 V for 60 s in the dark. We theorize that this temporary effect arises from improved charge-carrier collection enhanced by electric fields strengthened from ion migration toward interfaces. Our results demonstrate that extrinsic defect tolerance contributes to high efficiencies in LHP solar cells, which inspires further investigation into potential large-scale manufacturing cost savings as well as the degree of overlap between intrinsic and extrinsic defect tolerance in LHPs and "perovskite-inspired" lead-free stable alternatives.

7.
Chemistry ; 22(8): 2605-10, 2016 Feb 18.
Article in English | MEDLINE | ID: mdl-26866821

ABSTRACT

Methylammonium lead halide (MAPbX3 ) perovskites exhibit exceptional carrier transport properties. But their commercial deployment as solar absorbers is currently limited by their intrinsic instability in the presence of humidity and their lead content. Guided by our theoretical predictions, we explored the potential of methylammonium bismuth iodide (MBI) as a solar absorber through detailed materials characterization. We synthesized phase-pure MBI by solution and vapor processing. In contrast to MAPbX3, MBI is air stable, forming a surface layer that does not increase the recombination rate. We found that MBI luminesces at room temperature, with the vapor-processed films exhibiting superior photoluminescence (PL) decay times that are promising for photovoltaic applications. The thermodynamic, electronic, and structural features of MBI that are amenable to these properties are also present in other hybrid ternary bismuth halide compounds. Through MBI, we demonstrate a lead-free and stable alternative to MAPbX3 that has a similar electronic structure and nanosecond lifetimes.

8.
J Phys Chem Lett ; 6(21): 4297-302, 2015 Nov 05.
Article in English | MEDLINE | ID: mdl-26538045

ABSTRACT

Guided by predictive discovery framework, we investigate bismuth triiodide (BiI3) as a candidate thin-film photovoltaic (PV) absorber. BiI3 was chosen for its optical properties and the potential for "defect-tolerant" charge transport properties, which we test experimentally by measuring optical absorption and recombination lifetimes. We synthesize phase-pure BiI3 thin films by physical vapor transport and solution processing and single-crystals by an electrodynamic gradient vertical Bridgman method. The bandgap of these materials is ∼1.8 eV, and they demonstrate room-temperature band-edge photoluminescence. We measure monoexponential recombination lifetimes in the range of 180-240 ps for thin films, and longer, multiexponential dynamics for single crystals, with time constants up to 1.3 to 1.5 ns. We discuss the outstanding challenges to developing BiI3 PVs, including mechanical and electrical properties, which can also inform future selection of candidate PV absorbers.

SELECTION OF CITATIONS
SEARCH DETAIL
...