Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Physiol Int ; 106(3): 294-304, 2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31560234

ABSTRACT

BACKGROUND AND AIMS: The aim of this study was to evaluate changes in fat oxidation rate during 40 min of continuous exercise and identify the intensity at the highest fat oxidation rate (Fatmax). METHODS: A total of 14 sedentary males with age, body height, weight, and BMI averages of 29.3 ± 0.7 years, 178.3 ± 1.7 cm, 81.1 ± 3.9 kg, and 25.4 ± 0.9 kg/m2, respectively, were included in the study. Fatmax was determined using an indirect calorimeter with an incremental treadmill walking test at least after 12 h of fasting. On a separate day, at least after 12 h of fasting, the participants walked for 40 min within their predetermined individual Fatmax heart rate and speed ranges. RESULTS: The initial fat oxidation rate was not sustained within the first 16 min of exercise and was reduced; however, carbohydrate oxidation reached a stable level after nearly 10 min. CONCLUSIONS: In sedentary individuals, during low-intensity physical activity, fat oxidation rates may not be sustainable as expected from Fatmax testing. Therefore, when exercise is prescribed, one should consider that the fat oxidation rate might decrease in sedentary overweight individuals.


Subject(s)
Exercise/physiology , Walking/physiology , Adipose Tissue/physiology , Adult , Energy Metabolism/physiology , Exercise Test/methods , Fasting/physiology , Heart Rate/physiology , Humans , Lipid Metabolism/physiology , Male , Oxidation-Reduction , Oxygen Consumption/physiology
2.
Scand J Med Sci Sports ; 20 Suppl 3: 117-24, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21029198

ABSTRACT

Dehydration and hyperthermia both, if sufficiently severe, will impair exercise performance. Dehydration can also impair performance of tasks requiring cognition and skill. Body temperature may exceed 40 °C in competitive games played in hot weather, but limited data are available. Football played in the heat, therefore, poses a challenge, and effects on some aspects of performance become apparent as environmental temperature increases above about 12-15 °C. Prior acclimatization will reduce the impact of high environmental temperatures but provides limited protection when humidity is also high. Ingestion of fluids is effective in limiting the detrimental effects on performance: drinks with added carbohydrate and electrolytes are generally more effective than plain water and drinks may be more effective if taken cold than if taken at ambient temperature. Pre-exercise lowering of body temperature may aid some aspects of performance, but the efficacy has not been demonstrated in football.


Subject(s)
Body Temperature Regulation/physiology , Dehydration/complications , Fatigue/etiology , Hot Temperature/adverse effects , Soccer/physiology , Sweating/physiology , Adaptation, Physiological , Climate , Cold Temperature/adverse effects , Competitive Behavior , Fatigue/prevention & control , Fluid Therapy , Humans , Life Style , Water-Electrolyte Balance/physiology
3.
Scand J Med Sci Sports ; 20 Suppl 3: 133-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21029200

ABSTRACT

During a football match played in warm (34.3 ± 0.6 °C), humid (64 ± 2% rh) conditions, 22 male players had their pre-match hydration status, body mass change, sweat loss and drinking behavior assessed. Pre-match urine specific gravity (1.012 ± 0.006) suggested that all but three players commenced the match euhydrated. Players lost 3.1 ± 0.6 L of sweat and 45 ± 9 mmol of sodium during the 90-min match and replaced 55 ± 19% of their sweat losses and hence by the end of the game were 2.2 ± 0.9% lighter. The water volume consumed during the game was highly variable (1653 ± 487 mL; 741-2387 mL) but there was a stronger relationship between the estimated pre-game hydration status and water volume consumed, than between sweat rate and water volume consumed. In a second match, with the same players 2 weeks later in 34.4 ± 0.6 °C, 65 ± 3% rh, 11 players had a sports drink available to them before and during the match in addition to water. Total drink volume consumed during the match was the same, but approximately half the volume was consumed as sports drink. The results indicate that substantial sweat water and electrolyte losses can occur during match play in hot conditions and a substantial water and sodium deficit can occur in many players even when water or sports drink is freely available.


Subject(s)
Adaptation, Physiological , Competitive Behavior/physiology , Dehydration/etiology , Hot Temperature/adverse effects , Soccer/physiology , Sweating/physiology , Body Mass Index , Dehydration/prevention & control , Environment , Environmental Exposure/adverse effects , Exercise Tolerance , Humans , Male , Statistics as Topic , Statistics, Nonparametric , Stress, Physiological , Sweat/chemistry , Urinalysis , Water Loss, Insensible/physiology , Water-Electrolyte Balance/physiology , Young Adult
4.
Scand J Med Sci Sports ; 20 Suppl 3: 140-7, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21029201

ABSTRACT

Heat stress may contribute to decreased match performance when football is played in extreme heat. This study evaluated activity patterns and thermal responses of players during soccer matches played in different environmental conditions. Non-acclimatized soccer players (n=11, 20±2 years) played two matches in conditions of moderate heat (MH) and high heat (HH) index. Core temperature (T(c) ) and physical performance were measured using a telemetric sensor and a global positioning system, respectively. The average ambient temperature and relative humidity were MH 34±1 °C and 38±2%; HH 36±0 °C and 61±1%. Peak T(c) in the MH match was 39.1±0.4 °C and in the HH match it was 39.6±0.3 °C. The total distance covered in the first and second halves was 4386±367 and 4227±292 m for the MH match and 4301±487 and 3761±358 m for the HH match. Players covered more distance (P<0.001) in the first half of the HH match than in the second half. In football matches played at high environmental temperature and humidity, the physical performance of the players may decrease due to high thermal stress.


Subject(s)
Adaptation, Physiological , Body Temperature Regulation/physiology , Environment , Hot Temperature/adverse effects , Soccer/physiology , Stress, Physiological , Adult , Analysis of Variance , Body Mass Index , Competitive Behavior/physiology , Confidence Intervals , Fatigue/etiology , Fever/complications , Humans , Male , Motor Activity/physiology , Oxygen Consumption/physiology
5.
J Sports Med Phys Fitness ; 42(4): 418-24, 2002 Dec.
Article in English | MEDLINE | ID: mdl-12391435

ABSTRACT

BACKGROUND: The aim of this study was to determine the effect of lactate anion, independent of H+, on in vitro rat diaphragm muscle tension development, and to evaluate the changes in excitability by measuring resting membrane potential (RMP) and the amplitude of the sarcolemma action potential (AP). METHODS: Diaphragm muscle strips taken from 5 Wistar strain albino rats were placed in a tissue bath aerated with 95% O2 and 5% CO2 continuously at 30 degrees C. The muscle was attached to an isometric force transducer and stimulated indirectly by the phrenic nerve (0.2 msec, 0.5 Hz, and supramaximally). Two groups were studied, each subjected to a different sequence of 20 min exposures to a high level of lactate (high [La]), (20 mM) or control periods (C) without lactate. The first group was subjected to (C, high [La], C), and the second was subjected to (high [La], C, high [La]). Following the preparation of high [La] solution, pH was adjusted by adding saturated NaOH. In the second part of this experiment conventional microelectrode technique was used to determine the RMP and amplitude of sarcolemma AP of the rat diaphragm muscle. Thirteen muscles were used and 20-30 measurements were performed in both C and high [La] groups. RESULTS: Addition of lactate reduced the mean tension development significantly (p<0.05) at isopH (pH was 7.34+/-0.001 for C vs 7.33+/-0.001 for high [La]). Mean values of RMP (84.29+/-0.29 mV for C, -84.82+/-0.28 mV for high[La]) and amplitude of sarcolemma AP (118.86+/-0.72 mV for C, 119.19+/-0.71 mV for high[La]) did not differ significantly. CONCLUSIONS: We conclude that lactate reduces tension development at iso-pH without altering the amplitude of sarcolemma AP and RMP.


Subject(s)
Diaphragm/drug effects , Lactic Acid/pharmacology , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Animals , In Vitro Techniques , Membrane Potentials/physiology , Muscle Contraction/physiology , Muscle Fatigue/drug effects , Rats , Rats, Wistar , Reference Values , Sarcolemma/physiology
6.
Am J Physiol ; 274(3): E397-402, 1998 03.
Article in English | MEDLINE | ID: mdl-9530120

ABSTRACT

It has been suggested that during a skeletal muscle contraction the metabolic energy cost at the onset may be greater than the energy cost related to holding steady-state force. The purpose of the present study was to investigate the effect of contraction duration on the metabolic energy cost and fatigue process in fully perfused contracting muscle in situ. Canine gastrocnemius muscle (n = 6) was isolated, and two contractile periods (3 min of isometric, tetanic contractions with 45-min rest between) were conducted by each muscle in a balanced order design. The two contractile periods had stimulation patterns that resulted in a 1:3 contraction-to-rest ratio, with the difference in the two contractile periods being in the duration of each contraction: short duration 0.25-s stimulation/0.75-s rest vs. long duration 1-s stimulation/3-s rest. These stimulation patterns resulted in the same total time of stimulation, number of stimulation pulses, and total time in contraction for each 3-min period. Muscle O2 uptake, the fall in developed force (fatigue), the O2 cost of developed force, and the estimated total energy cost (ATP utilization) of developed force were significantly greater (P < 0.05) with contractions of short duration. Lactate efflux from the working muscle and muscle lactate concentration were significantly greater with contractions of short duration, such that the calculated energy derived from glycolysis was three times greater in this condition. These results demonstrate that contraction duration can significantly affect both the aerobic and anaerobic metabolic energy cost and fatigue in contracting muscle. In addition, it is likely that the greater rate of fatigue with more rapid contractions was a result of elevated glycolytic production of lactic acid.


Subject(s)
Energy Metabolism , Muscle Contraction , Muscle Fatigue , Muscle, Skeletal/metabolism , Adenosine Triphosphate/metabolism , Aerobiosis , Anaerobiosis , Animals , Dogs , Female , Male
7.
J Appl Physiol (1985) ; 81(2): 911-21, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8872663

ABSTRACT

Individuals with a prior history of (susceptible to high altitude pulmonary edema (HAPE-S) have high resting pulmonary arterial pressures, but little data are available on their vascular response to exercise. We studied the pulmonary vascular response to exercise in seven HAPE-S and nine control subjects at sea level and at 3,810 m altitude. At each location, both normoxic (inspired PO2 = 148 Torr) and hypoxic (inspired PO2 = 91 Torr) studies were conducted. Pulmonary hemodynamic measurements included pulmonary arterial and pulmonary arterial occlusion pressures. A multiple regression analysis demonstrated that the pulmonary arterial pressure reactivity to exercise was significantly greater in the HAPE-S group. This reactivity was not influenced by altitude or oxygenation, implying that the response was intrinsic to the pulmonary circulation. Pulmonary arterial occlusion pressure reactivity to exercise was also greater in the HAPE-S group, increasing with altitude but independent of oxygenation. These findings suggest an augmented flow-dependent pulmonary vasoconstriction and/or a reduced vascular cross-sectional area in HAPE-S subjects.


Subject(s)
Altitude Sickness/physiopathology , Altitude , Exercise/physiology , Pulmonary Circulation/physiology , Pulmonary Edema/physiopathology , Adult , Anaerobic Threshold/physiology , Blood Gas Analysis , Cardiac Output/physiology , Extravascular Lung Water/physiology , Female , Hemodynamics/physiology , Humans , Male , Pulmonary Gas Exchange/physiology , Pulmonary Wedge Pressure/physiology , Vital Capacity
8.
J Appl Physiol (1985) ; 81(2): 922-32, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8872664

ABSTRACT

Ventilation-perfusion (VA/Q) mismatch has been shown to increase during exercise, especially in hypoxia. A possible explanation is subclinical interstitial edema due to high pulmonary capillary pressures. We hypothesized that this may be pathogenetically similar to high-altitude pulmonary edema (HAPE) so that HAPE-susceptible people with higher vascular pressures would develop more exercise-induced VA/Q mismatch. To examine this, seven healthy people with a history of HAPE and nine with similar altitude exposure but no HAPE history (control) were studied at rest and during exercise at 35, 65, and 85% of maximum 1) at sea level and then 2) after 2 days at altitude (3,810 m) breathing both normoxic (inspired Po2 = 148 Torr) and hypoxic (inspired Po2 = 91 Torr) gas at both locations. We measured cardiac output and respiratory and inert gas exchange. In both groups, VA/Q mismatch (assessed by log standard deviation of the perfusion distribution) increased with exercise. At sea level, log standard deviation of the perfusion distribution was slightly higher in the HAPE-susceptible group than in the control group during heavy exercise. At altitude, these differences disappeared. Because a history of HAPE was associated with greater exercise-induced VA/Q mismatch and higher pulmonary capillary pressures, our findings are consistent with the hypothesis that exercise-induced mismatch is due to a temporary extravascular fluid accumulation.


Subject(s)
Altitude Sickness/physiopathology , Altitude , Exercise/physiology , Pulmonary Edema/physiopathology , Ventilation-Perfusion Ratio/physiology , Adult , Aging/physiology , Altitude Sickness/blood , Blood Gas Analysis , Cardiac Output/physiology , Energy Metabolism/physiology , Female , Hemodynamics/physiology , Humans , Lactic Acid/blood , Male , Noble Gases , Pulmonary Circulation/physiology , Pulmonary Edema/blood , Pulmonary Gas Exchange/physiology
9.
J Appl Physiol (1985) ; 80(6): 1978-83, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8806904

ABSTRACT

The purpose of this study was to determine whether reduction in apparent muscle O2 diffusing capacity (Dmo2) calculated during reduced blood flow conditions in maximally working muscle is a reflection of alterations in blood flow distribution. Isolated dog gastrocnemius muscle (n = 6) was stimulated for 3 min to achieve peak O2 uptake (VO2) at two levels of blood flow (controlled by pump perfusion): control (C) conditions at normal perfusion pressure (blood flow = 111 +/- 10 ml.100 g-1.min-1) and reduced blood flow treatment [ischemia (I); 52 +/- 6 ml.100 g-1.min-1]. In addition, maximal vasodilation was achieved by adenosine (A) infusion (10(-2)M) at both levels of blood flow, so that each muscle was subjected randomly to a total of four conditions (C, CA, I, and IA; each separated by 45 min of rest). Muscle blood flow distribution was measured with 15-microns-diameter colored microspheres. A numerical integration technique was used to calculate Dmo2 for each treatment with use of a model that calculates O2 loss along a capillary on the basis of Fick's law of diffusion. Peak VO2 was reduced significantly (P < 0.01) with ischemia and was unchanged by adenosine infusion at either flow rate (10.6 +/- 0.9, 9.7 +/- 1.0, 6.7 +/- 0.2, and 5.9 +/- 0.8 ml.100 g-1.min-1 for C, CA, I, and IA, respectively). Dmo2 was significantly lower by 30-35% (P < 0.01) when flow was reduced (except for CA vs. I; 0.23 +/- 0.03, 0.20 +/- 0.02, 0.16 +/- 0.01, and 0.13 +/- 0.01 ml.100 g-1.min-1.Torr-1 for C, CA, I, and IA, respectively). As expressed by the coefficient of variation (0.45 +/- 0.04, 0.47 +/- 0.04, 0.55 +/- 0.03, and 0.53 +/- 0.04 for C, CA, I, and IA, respectively), blood flow heterogeneity per se was not significantly different among the four conditions when examined by analysis of variance. However, there was a strong negative correlation (r = 0.89, P < 0.05) between Dmo2 and blood flow heterogeneity among the four conditions, suggesting that blood flow redistribution (likely a result of a decrease in the number of perfused capillaries) becomes an increasingly important factor in the determination of Dmo2 as blood flow is diminished.


Subject(s)
Blood Flow Velocity/physiology , Muscle, Skeletal/physiology , Oxygen/metabolism , Animals , Dogs , Female , Male
10.
J Appl Physiol (1985) ; 80(4): 1313-21, 1996 Apr.
Article in English | MEDLINE | ID: mdl-8926261

ABSTRACT

This study was designed to investigate 1) whether a protocol employing a gradual reduction in O2 availability to submaximally contracting muscle results in relatively minor disturbances in intracellular homeostasis and 2) the interaction between tissue oxygenation and the proposed regulators of muscle respiration, metabolism, and force production. O2 delivery to isolated submaximally contracting [isometric contractions at 3 Hz; approximately 50% of peak O2 uptake (VO2)] in situ canine gastrocnemius (n = 6) was manipulated by decreasing arterial PO2 (hypoxemia; H) or muscle blood flow (ischemia; I) during three separate periods in each muscle [control (C), H, or I; each separated by 45 min of rest]. O2 delivery was reduced gradually in small steps every 3 min by H or I during two of the contraction periods (6 steps for a total of 21 min; O2 delivery reduced by 67% by the end of 21 min), whereas C was at normal O2 delivery for a 15-min period. Muscle VO2 was maintained at control levels for the first two O2 delivery reduction steps for the H and I conditions and then fell proportionally with O2 delivery to approximately 35% of the initial value by the end of the 21-min contraction period. Muscle force development generally fell in parallel with VO2. There was no significant changes from the values obtained during C contractions in intracellular concentrations of ATP, phosphocreatine, NH3, calculated free ADP, lactate, and redox state ratios as the O2 delivery was reduced, even with the severe decline in VO2 and developed force. These results demonstrated that when O2 availability was reduced gradually to contracting skeletal muscle, 1) developed force (ATP utilization) was reduced through a tight coupling with aerobic ATP supply, such that there was little additional disruption of intracellular homeostasis, and 2) there was an apparent dissociation of some of the proposed regulators of cell respiration and force development from the control of these processes.


Subject(s)
Hemostasis/physiology , Muscle, Skeletal/metabolism , Oxygen/metabolism , Animals , Blood Flow Velocity/physiology , Dogs , Female , Lactates/metabolism , Male , Time Factors
11.
J Appl Physiol (1985) ; 79(6): 2114-21, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8847281

ABSTRACT

We previously showed that when pulmonary capillaries are exposed to high transmural pressures, stress failure of the blood-gas barrier occurs. It has been suggested that the surface tension of the alveolar lining layer may protect against stress failure because at high transmural pressures the capillaries bulge into the alveolar spaces. To test this hypothesis, we abolished the gas-liquid surface tension of the alveoli by filling rabbit lungs with normal saline. The lungs were then perfused at capillary transmural pressures of 32.5 or 52.5 cmH2O for 1 min with autologous blood, the blood was washed out with a saline-dextran mixture (3 min), and the lungs were fixed for electron microscopy with buffered glutaraldehyde; all perfusions were done at the same pressure. The frequency of breaks was measured in the capillary endothelial layer, alveolar epithelial layer, and basement membranes, and the data were compared with those in air-filled lungs at the same capillary transmural pressure and lung volume. We found that the frequency of breaks in the endothelium was not significantly different between air and saline filling and that there were fewer breaks in the outer boundary of the epithelial cells. By contrast, after saline filling, a larger number of breaks were seen in the inner boundary of the epithelium. The frequency of disruptions of the inner boundary of the epithelium was closely correlated with the volume of edema fluid collected at the trachea during the perfusion. These breaks in the inner boundary of the epithelium had not previously been seen in air-filled lungs exposed to the same pressures. The results suggest that abolishing the surface tension of the alveolar lining layer removes support from parts of the blood-gas barrier when the capillaries are subjected to a high transmural pressure but that not all portions of the barrier are subjected to the same forces.


Subject(s)
Lung/physiology , Pulmonary Circulation/physiology , Surface Tension , Animals , Cell Count , Female , Lung/ultrastructure , Microscopy, Electron , Permeability , Rabbits , Stress, Mechanical
12.
J Appl Physiol (1985) ; 79(5): 1729-35, 1995 Nov.
Article in English | MEDLINE | ID: mdl-8594035

ABSTRACT

We investigated whether the reduction in calculated muscle diffusion capacity for O2 (DmO2) previously shown to occur with lowered hemoglobin concentration ([Hb]) perfusion of maximally working muscle is related to changes in the blood flow distribution. If blood flow distribution is altered during low [Hb] conditions, the reduction in the calculated DmO2 may in fact be due to increasing heterogeneity and not to some other hemoglobin-related factor. Color-stained (15-microns-diam) microspheres were injected into the artery supplying maximally working isolated in situ dog gastrocnemius muscle (n = 6) while it was being perfused (flow controlled by pump perfusion) with whole blood at three different levels of [Hb] (14.1 +/- 0.5, 8.9 +/- 0.4, and 5.7 +/- 0.4 (SE) g/100 ml] in a blocked-order design. Muscle blood flow and arterial PO2 were not changed as [Hb] was altered. Maximal O2 uptake (11.8 +/- 1.3, 8.2 +/- 0.8, and 6.0 +/- 0.9 ml.100 g-1 min-1 for those [Hb] values, respectively) and the associated estimate of DmO2 (0.25 +/- 0.03, 0.18 +/- 0.03, and 0.15 +/- 0.03 ml.100 g-1.min-1.Torr-1) declined significantly (P < 0.05) with [Hb]. However, the dispersion of the blood flow distribution did not change significantly and, if anything, indicated less heterogeneity at lower [Hb] (coefficient of variation - 0.52 +/- 0.06, 0.46 +/- 0.05, and 0.43 +/- 0.03). These results suggest that in maximally working canine muscle in situ, when O2 delivery is reduced by lowering [Hb] (at constant blood flow), changes in blood flow distribution play no significant role in the reduction of maximal O2 uptake and calculated DmO2. The apparent increase in the resistance to O2 diffusion (i.e., reduction in the DmO2) during anemia may therefore be a result of increased red blood cell spacing in the capillary, slow chemical off-loading kinetics of O2 from Hb, or some other effect that remains to be determined.


Subject(s)
Hemoglobins/metabolism , Muscle Contraction/physiology , Muscle, Skeletal/blood supply , Oxygen Consumption , Physical Exertion/physiology , Animals , Biological Transport , Blood Gas Analysis , Dogs , Female , Male , Microspheres , Muscle, Skeletal/metabolism , Regional Blood Flow
13.
Microvasc Res ; 50(2): 235-48, 1995 Sep.
Article in English | MEDLINE | ID: mdl-8538503

ABSTRACT

We have previously shown that raising the capillary transmural pressure (Ptm) in rabbit lung causes disruption of the capillary endothelium, alveolar epithelium, or sometimes all layers of the wall. In those studies the lungs were perfused with autologous blood (1 min), then saline/dextran (3 min), followed by glutaraldehyde fixative (10 min), all at the same pressure. The present study was designed to determine whether increasing the time of exposure of the capillaries to the increased pressure altered the frequency of stress failure. The procedure was identical to that of the previous study except that the duration of the blood perfusion was extended from 1 to 10 and 100 min. We chose a Ptm of 32.5 cm H2O because our previous studies showed that this caused only a few disruptions per millimeter endothelial and epithelial boundary length (0.7 +/- 0.4 and 0.9 +/- 0.6 (SE), respectively). Ten New Zealand white rabbit lungs were perfused with autologous blood plus homologous blood from additional rabbits for 10 and 100 min. After 100 min of blood perfusion the number of disruptions per millimeter endothelial and epithelial boundary length (0.66 +/- 0.4 and 0.52 +/- 0.33 (SE), respectively) was not significantly different from the earlier study. Thus, increasing the duration of the increased Ptm during blood perfusion by 100-fold did not alter the incidence of stress failure. These results indicated that any viscoelastic behavior resulting in further strain and ultimately failure of the capillary walls is insignificant over a wide range of exposure times to increased pressure under the conditions of this study.


Subject(s)
Endothelium, Vascular/physiology , Lung/blood supply , Microcirculation/physiology , Animals , Endothelium, Vascular/pathology , Female , Male , Perfusion , Plethysmography, Impedance , Rabbits , Stress, Mechanical , Vasoconstriction/physiology
14.
Am J Physiol ; 268(4 Pt 2): H1453-61, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7733346

ABSTRACT

Previously, a reduction in fractional inspired O2 (FIO2) during dynamic exercise of the human quadriceps muscles of one leg resulted in increased muscle blood flow (Q) and a fall in femoral venous O2 tension (PO2) but no change in peak O2 uptake (VO2). These data can be interpreted as reflecting an increase in muscle O2 diffusive capacity (DO2) in hypoxia or, alternatively, that maximum O2 uptake (VO2max) was not reached for these muscles when air was breathed, in which case the theory of diffusion limitation to VO2max is not applicable to these data. Therefore, the primary goal of this study was to test the hypothesis that VO2max would be reduced in hypoxia as a result of the decreased O2 supply and a constant diffusional conductance from blood to exercising muscle. To resolve this, five trained men were studied performing single leg incremental knee-extensor exercise to VO2max while breathing air (N) and again while breathing 12% O2 (H). The maximum work rate (WRmax) was 30-50 W greater and produced even greater associated maximum leg Q (N = 9.1 +/- 0.61 and H = 8.2 +/- 0.65 l/min, P < 0.05) and leg O2 than in previous studies. Hypoxia reduced quadriceps muscle VO2max (N = 1.4 +/- 0.1 and H = 1.1 +/- 0.1 l/min, P < 0.05). In the two conditions the relationships between 1) measured femoral venous PO2 (N = 18 +/- 0.5 and H = 13 +/- 0.5 Torr) and VO2max and 2) calculated mean capillary PO2 (N = 37 +/- 0.4 and H = 28 +/- 0.8 Torr) and VO2max were each one of proportionality.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Knee/physiology , Muscles/physiology , Oxygen Consumption , Physical Exertion , Adult , Capillaries , Heart Rate , Humans , Male , Muscles/anatomy & histology , Organ Size , Oxygen/blood
15.
Eur Respir J ; 8(4): 523-9, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7664848

ABSTRACT

The pathogenesis of high-altitude pulmonary oedema (HAPE) is disputed. Recent reports show a strong correlation between the occurrence of HAPE and pulmonary artery pressure, and it is known that the oedema is of the high-permeability type. We have, therefore, proposed that HAPE is caused by ultrastructural damage to pulmonary capillaries as a result of stress failure of their walls. However, no satisfactory electron microscopy studies are available in patients with HAPE, and animal models are difficult to find. Madison strain Sprague-Dawley rats show a brisk pulmonary pressure response to acute hypoxia and are susceptible to HAPE. We exposed 13 Madison rats to a pressure of 294 torr for up to 12.5 h, or 4 rats to 236 torr for up to 8 h. Pulmonary arterial or right ventricular systolic pressures measured with a catheter increased from 30.5 +/- 0.5 (SEM) in controls (n = 4) to 48 +/- 2 torr (n = 11). The lungs were fixed for electron microscopy with intravascular glutaraldehyde. Frothy bloodstained fluid was seen in the trachea of three animals. Ultrastructural examination showed evidence of stress failure of pulmonary capillaries, including disruption of the capillary endothelial layer, or all layers of the wall, swelling of the alveolar epithelial layer, red blood cells (RBCs) and oedematous fluid in the alveolar wall interstitium, proteinaceous fluid and RBCs in the alveolar spaces, and fluid-filled protrusions of the endothelium into the capillary lumen.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Altitude Sickness/etiology , Lung/blood supply , Pulmonary Edema/etiology , Stress, Physiological/physiopathology , Altitude Sickness/pathology , Altitude Sickness/physiopathology , Animals , Capillaries/physiopathology , Capillaries/ultrastructure , Capillary Permeability/physiology , Hypertension, Pulmonary/etiology , Hypertension, Pulmonary/physiopathology , Lung/ultrastructure , Microscopy, Electron , Pulmonary Edema/pathology , Pulmonary Edema/physiopathology , Pulmonary Wedge Pressure/physiology , Rats , Rats, Sprague-Dawley
16.
Med Sci Sports Exerc ; 27(3): 371-7, 1995 Mar.
Article in English | MEDLINE | ID: mdl-7752864

ABSTRACT

The purpose of this work was to examine the effect of the lactate ion on the fatigue process in working muscle independent of muscle [H+]. L-(+)-lactate was infused, at a pH that did not change arterial pH, into the blood perfusing an isolated, in situ dog gastrocnemius (N = 5) working at a submaximal intensity (isometric contractions at 2 Hz) and compared with control (C) conditions without lactate infusion. Each muscle was stimulated to work for two 60-min periods (separated by 45 min rest), consisting of three 20-min time periods with either the high arterial lactate condition (high [La]) or C condition sequentially ordered within each 60-min work period. Blood flow and O2 delivery were held constant between the C and high [La] conditions. Arterial and venous blood measurements and muscle biopsies were taken (7 biopsies from each condition) during each condition. Lactate infusion significantly increased arterial [La] (C = 4.2 +/- 0.2 mM vs high [La] = 14.4 +/- 0.2; mean +/- SE) and muscle [La] (C = 8.1 +/- 0.8 mM w.w. vs high [La] = 12.0 +/- 1.4) while arterial and muscle pH were unchanged between conditions. Muscle tension development was significantly reduced (C = 94 +/- 2 N.100 g-1 vs high [La] = 80 +/- 3) during lactate infusion and muscle O2 uptake changed proportionally with tension. These findings support an effect of the lactate anion on tension development which is independent of pH.


Subject(s)
Isometric Contraction/physiology , Lactates/pharmacokinetics , Muscle Fatigue/physiology , Muscle, Skeletal/metabolism , Animals , Dogs , Hydrogen-Ion Concentration , Intracellular Fluid/metabolism , Lactates/blood , Muscle, Skeletal/blood supply , Oxygen/blood , Oxygen Consumption/physiology , Regional Blood Flow/physiology
17.
J Appl Physiol (1985) ; 77(5): 2380-4, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7868458

ABSTRACT

We examined the hypothesis that the initial decline (first 1-2 min) in force development that occurs in working muscle when blood flow is halted is caused by O2 availability and not another factor related to blood flow. This was tested by reducing O2 delivery (muscle blood flow X arterial O2 content) to working muscle by either stopping blood flow [ischemia (I)] or maintaining blood flow with low arterial O2 content [hypoxemia (H)]. If initial decline in force development were similar between these two methods of reducing O2 delivery, it would suggest O2 availability as the common pathway. Isolated dog gastrocnemius muscle was stimulated at approximately 60-70% of maximal O2 uptake (1 isometric tetanic contraction every 2 s) until steady-state conditions of muscle blood flow and developed force were attained (approximately 3 min). Two conditions were then sequentially imposed on the working muscle: I, induced by shutting off pump controlling arterial perfusion of the muscle and clamping venous outflow, and H, induced by perfusing the muscle with deoxygenated blood (collected before testing while animal breathed N2) at steady-state blood flow level. Rates of the fall in force production in 17 matched conditions of H and I (approximately 40 s for each condition) were compared in 6 muscles tested. The blood perfusing the muscle during H had arterial PO2 = 8 +/- 1 (SE) Torr, arterial PCO2 = 37 +/- 1 Torr, and arterial pH = 7.39 +/- 0.03. The rate of decline in developed force was not significantly different (P = 0.46) between the 17 matched conditions of H (0.66 +/- 0.10 g force.g mass-1.s-1) and I (0.79 +/- 0.15 g force.g mass-1.s-1). These findings suggest that the initial fall in developed force in working skeletal muscle that occurs with ischemia is related to O2 availability.


Subject(s)
Ischemia/physiopathology , Muscle Fatigue/physiology , Muscle, Skeletal/physiology , Oxygen Consumption/physiology , Animals , Blood Flow Velocity , Blood Gas Analysis , Dogs , Female , Male , Muscle, Skeletal/blood supply , Oxygen/blood , Physical Exertion
18.
J Appl Physiol (1985) ; 76(6): 2820-4, 1994 Jun.
Article in English | MEDLINE | ID: mdl-7928916

ABSTRACT

We asked whether maximally working muscle could increase O2 extraction at fixed O2 delivery [i.e., improve maximal O2 uptake (VO2max)] when vascular resistance was decreased with adenosine (A) infusion. We postulated that a reduction in vascular resistance at the same blood flow (Q) might result in more uniform vascular perfusion and also possibly increase red blood cell transit time, thereby potentially improving the ability of the tissue to extract O2. Pump-perfused isolated dog gastrocnemius muscle (n = 6) was stimulated maximally at each of two levels of Q: 110 +/- 3 and 54 +/- 4 (SE) ml.100 g-1.min-1 [normal control (C) and ischemia (I), respectively], both before and after giving 10(-2) M of A solution in each case. Arterial and venous blood samples were taken to measure blood gases, and the Fick principle was used to calculate O2 uptake. Resistance decreased significantly after A treatment in both groups (1.2 +/- 0.1 vs. 0.9 +/- 0.1 and 1.3 +/- 0.1 vs. 1.1 +/- 0.1 mmHg.ml-1.100 g.min for C vs. C + A and I vs. I + A, respectively; P < 0.01). O2 delivery was lower with I but did not change at either perfusion rate when A was infused. VO2max also decreased significantly with I but was no different when A was added (13.8 +/- 0.7 vs. 13.8 +/- 0.9 and 8.4 +/- 0.5 vs. 8.2 +/- 0.6 ml.100 g-1.min-1 for C vs. C + A and I vs. I + A, respectively). These results show that the decrease in resistance with A did not lead to changes in VO2max.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Adenosine/pharmacology , Muscle, Skeletal/metabolism , Oxygen Consumption/drug effects , Acid-Base Equilibrium/drug effects , Adenosine/administration & dosage , Animals , Dogs , Electric Stimulation , Female , Infusions, Intravenous , Isometric Contraction/physiology , Lactates/blood , Lactic Acid , Male , Muscle, Skeletal/drug effects , Sciatic Nerve/drug effects , Sciatic Nerve/physiology , Vascular Resistance/drug effects , Vascular Resistance/physiology
20.
J Appl Physiol (1985) ; 75(4): 1911-6, 1993 Oct.
Article in English | MEDLINE | ID: mdl-8282650

ABSTRACT

During conventional cycle ergometry, as work rate (WR) is increased toward maximum, O2 extraction increases hyperbolically, typically achieving values of 80-90% at peak O2 uptake (VO2). In contrast, studies using isolated knee-extensor exercise report much higher mass-specific blood flows (Q) and lower maximal O2 extractions (approximately 70%), which have been interpreted as transit time limitation to O2 movement out of the muscle capillary. However, maximal achievable WR levels during conventional cycle ergometry are generally reached (over 10-15 min) after rapid increases in WR, whereas the reported knee-extensor studies have used only more lengthy protocols (45 min). The duration of these protocols may have prevented the attainment of high WR levels and thus high O2 extraction ratios. Accordingly, this investigation examined leg Q and O2 extraction responses during single-leg knee-extensor exercise incremented rapidly (steps of 15-25 W per 2- to 3-min interval), which produced fatigue in 13-15 min. Q and muscle VO2 increased linearly with WR to fatigue with Q-WR and VO2-WR slopes similar to those reported in previous knee-extensor studies. However, with the use of this protocol, very high maximal achievable WR [99 +/- 6 (SE) W] and muscle Q (385 +/- 26 ml.min-1 x 100 g-1) levels were attained, some 80% greater than previously reported. An O2 extraction of 84.6 +/- 2.1% was reached, giving a maximal VO2 of 60.2 +/- 5.8 ml.min-1 x 100 g-1. We conclude that, even under the high Q conditions of single-leg knee-extensor exercise, O2 extraction does not reach a plateau on the basis of short transit times and that previous conclusions to the contrary reflect failure to attain sufficiently high WR levels. Maximal VO2, Q, and O2 extraction in this model have yet to be defined.


Subject(s)
Exercise/physiology , Muscles/blood supply , Oxygen/blood , Adult , Bicycling , Blood Gas Analysis , Exercise Test , Humans , Male , Physical Exertion/physiology , Pulmonary Gas Exchange/physiology , Regional Blood Flow/physiology , Thermodilution
SELECTION OF CITATIONS
SEARCH DETAIL
...