Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
2.
BMC Genomics ; 21(1): 331, 2020 Apr 29.
Article in English | MEDLINE | ID: mdl-32349672

ABSTRACT

BACKGROUND: Salivary cell secretion (SCS) plays a critical role in blood feeding by medicinal leeches, making them of use for certain medical purposes even today. RESULTS: We annotated the Hirudo medicinalis genome and performed RNA-seq on salivary cells isolated from three closely related leech species, H. medicinalis, Hirudo orientalis, and Hirudo verbana. Differential expression analysis verified by proteomics identified salivary cell-specific gene expression, many of which encode previously unknown salivary components. However, the genes encoding known anticoagulants have been found to be expressed not only in salivary cells. The function-related analysis of the unique salivary cell genes enabled an update of the concept of interactions between salivary proteins and components of haemostasis. CONCLUSIONS: Here we report a genome draft of Hirudo medicinalis and describe identification of novel salivary proteins and new homologs of genes encoding known anticoagulants in transcriptomes of three medicinal leech species. Our data provide new insights in genetics of blood-feeding lifestyle in leeches.


Subject(s)
Genome , Hirudo medicinalis/genetics , Salivary Proteins and Peptides/genetics , Animals , Anticoagulants/metabolism , Gene Expression Profiling , Gene Expression Regulation , Hirudo medicinalis/metabolism , Leeches/classification , Leeches/genetics , Leeches/metabolism , Proteomics , Saliva/metabolism , Salivary Proteins and Peptides/metabolism
3.
Mitochondrial DNA B Resour ; 1(1): 254-256, 2016 Mar 28.
Article in English | MEDLINE | ID: mdl-33473467

ABSTRACT

Here we present two incomplete mitochondrial genome sequences of Hirudo medicinalis and Hirudo verbana (Annelida, Hirudinea). The corresponding sequences are 14,729 and 14,604 base pairs in length. They contain all mitochondrial genes (13 protein-coding genes, 22 tRNAs and two rRNAs) but lack the non-coding region. Nevertheless, the robust reconstruction of their phylogenetic relationships presented here reveals distinct separation of both leeches from other annelids and at the same time relatively high dissimilarity between each other.

4.
BMC Biochem ; 16: 27, 2015 Nov 21.
Article in English | MEDLINE | ID: mdl-26589324

ABSTRACT

BACKGROUND: Destabilase-Lysozyme (mlDL) is a multifunctional i-type enzyme that has been found in the secretions from the salivary glands of medicinal leeches. mlDL has been shown to exhibit isopeptidase, muramidase and antibacterial activity. This enzyme attracts interest because it expresses thrombolytic activity through isopeptidolysis of the ε-(γ-Glu)-Lys bonds that cross-link polypeptide chains in stabilised fibrin. To date, three isoforms of mlDL have been identified. The enzymatic properties of pure mlDL isoforms have not yet been described because only destabilase complexes containing other proteins could be isolated from the salivary gland secretion and because low product yield from the generation of recombinant proteins has made comprehensive testing difficult. RESULTS: In the present study, we optimised the procedures related to the expression, isolation and purification of active mlDL isoforms (mlDL-Ds1, mlDL-Ds2, mlDL-Ds3) using an Escherichia coli expression system, and we detected and compared their muramidase, lytic, isopeptidase and antimicrobial activities. After optimisation, the product yield was 30 mg per litre of culture. The data obtained in our study led to the suggestion that the recombinant mlDL isoforms isolated from inclusion bodies form stable oligomeric complexes. Analyses of the tested activities revealed that all isoforms exhibited almost identical patterns of pH and ionic strength effects on the activities. We determined that mlDL-Ds1, 2, 3 possessed non-enzymatic antibacterial activity independent of their muramidase activity. For the first time, we demonstrated the fibrinolytic activity of the recombinant mlDL and showed that only intact proteins possessed this activity, suggesting their enzymatic nature. CONCLUSIONS: The recombinant Destabilase-Lysozyme isoforms obtained in our study may be considered potential thrombolytic agents that act through a mechanism different from that of common thrombolytics.


Subject(s)
Endopeptidases/metabolism , Hirudo medicinalis/enzymology , Muramidase/metabolism , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacillus subtilis/drug effects , Bacillus subtilis/growth & development , Chromatography, Affinity , Chromatography, Gel , Circular Dichroism , Drug Stability , Endopeptidases/genetics , Endopeptidases/isolation & purification , Endopeptidases/pharmacology , Enzyme Stability , Escherichia coli/drug effects , Escherichia coli/growth & development , Fibrinolytic Agents/isolation & purification , Fibrinolytic Agents/metabolism , Fibrinolytic Agents/pharmacology , Hydrogen-Ion Concentration , Isoenzymes/genetics , Isoenzymes/isolation & purification , Isoenzymes/metabolism , Isoenzymes/pharmacology , Microbial Sensitivity Tests , Muramidase/genetics , Muramidase/isolation & purification , Muramidase/pharmacology , Osmolar Concentration , Peptide Fragments/genetics , Peptide Fragments/isolation & purification , Peptide Fragments/metabolism , Peptide Fragments/pharmacology , Peptide Mapping , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology
5.
Protein Expr Purif ; 116: 50-8, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26277552

ABSTRACT

Destabilase-lysozyme (mlDL) is an enzyme secreted by the salivary gland cells of medicinal leeches. Destabilase-lysozyme possesses lysozyme and isopeptidase activities. We generated recombinant destabilase-lysozyme isoform 2 in three expression systems, i.e., in the bacteria Escherichia coli, in the yeast Pichia pastoris, and in the human cell line Expi293F. In E. coli, we generated both polypeptide in inclusion bodies that was later undergone to the refolding and soluble protein that had been fused with the chaperone SlyD. The chaperone was later cleaved by a specific TEV-protease. In cultures of the yeast P. pastoris and the human cell line Expi293F, the soluble form of destabilase-lysozyme was accumulated in the culture media. For the generated enzymes, we determined the lysozyme, isopeptidase and fibrinolytic activities and tested their general antimicrobial effects. The comparisons of the enzymes generated in the different expression systems revealed that all of the destabilase-lysozymes obtained in the soluble forms possessed equal levels of lysozyme, isopeptidase and fibrinolytic activities that exceeded several to ten times the levels of the same activities of the destabilase-lysozyme renaturated from the inclusion bodies. A similar pattern of the differences in the levels of the general antimicrobial effects was observed for the destabilase-lysozymes generated in the soluble form and as inclusion bodies.


Subject(s)
Endopeptidases/genetics , Hirudo medicinalis/enzymology , Hirudo medicinalis/genetics , Muramidase/genetics , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacterial Infections/drug therapy , Cell Line , Cloning, Molecular/methods , Endopeptidases/chemistry , Endopeptidases/metabolism , Escherichia coli/genetics , Fibrinolytic Agents/chemistry , Fibrinolytic Agents/metabolism , Fibrinolytic Agents/pharmacology , Hirudo medicinalis/chemistry , Humans , Muramidase/chemistry , Muramidase/metabolism , Pichia/genetics , Protein Refolding , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...