Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(38): eadh5396, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37738351

ABSTRACT

Interferometric methods form the basis of highly sensitive measurement techniques from astronomy to bioimaging. Interferometry typically requires high stability between the measured and reference beams. The presence of rapid phase fluctuations washes out interference fringes, making phase profile recovery impossible. This challenge can be addressed by shortening the measurement time. However, such an approach reduces photon-counting rates, precluding applications in low-intensity imaging. We introduce a phase imaging technique which is immune to time-dependent phase fluctuations. Our technique, relying on intensity correlation instead of direct intensity measurements, allows one to obtain high interference visibility for arbitrarily long acquisition times. We prove the optimality of our method using the Cramér-Rao bound in the extreme case when no more than two photons are detected within the time window of phase stability. Our technique will broaden prospects in phase measurements, including emerging applications such as in infrared and x-ray imaging and quantum and matter-wave interferometry.

2.
Phys Rev Lett ; 131(9): 090801, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37721831

ABSTRACT

We derive new bounds on achievable precision in the most general adaptive quantum metrological scenarios. The bounds are proven to be asymptotically saturable and equivalent to the known parallel scheme bounds in the limit of a large number of channel uses. This completely solves a long-standing conjecture in the field of quantum metrology on the asymptotic equivalence between parallel and adaptive strategies. The new bounds also allow us to easily assess the potential benefits of invoking nonstandard causal superposition strategies, for which we prove, similarly to the adaptive case, the lack of asymptotic advantage over the parallel ones.

3.
Phys Rev Lett ; 130(16): 160802, 2023 Apr 21.
Article in English | MEDLINE | ID: mdl-37154663

ABSTRACT

Fisher information is a key notion in the whole field of quantum metrology. It allows for a direct quantification of the maximal achievable precision of the estimation of the parameters encoded in quantum states using the most general quantum measurement. It fails, however, to quantify the robustness of quantum estimation schemes against measurement imperfections, which are always present in any practical implementations. Here, we introduce a new concept of Fisher information measurement noise susceptibility that quantifies the potential loss of Fisher information due to small measurement disturbance. We derive an explicit formula for the quantity, and demonstrate its usefulness in the analysis of paradigmatic quantum estimation schemes, including interferometry and superresolution optical imaging.

SELECTION OF CITATIONS
SEARCH DETAIL
...