Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Br J Dermatol ; 184(6): 1143-1152, 2021 06.
Article in English | MEDLINE | ID: mdl-33205411

ABSTRACT

BACKGROUND: Skin sensitization to hydroperoxides (R-OOHs) of the commonly used fragrance terpenes limonene, linalool and citronellol is frequently reported. R-OOHs are believed to initiate the process leading to sensitization and allergic contact dermatitis through mechanisms involving radical intermediates. Thus, radical intermediates, keratinocytes and dendritic cells (DCs) may act in concert to initiate the process. OBJECTIVES: To evaluate individual DC activation profiles by R-OOHs in the context of keratinocytes with regard to frequency, specificity and magnitude of upregulation. METHODS: We used 2D and 3D cocultures with keratinocytes/reconstructed human epidermis (RHE) and DCs to evaluate cell surface levels of the costimulatory molecules CD86, CD80 and the adhesion molecule CD54 on cocultured DCs. Analysis of radical formation from limonene hydroperoxides in RHE was performed using electron paramagnetic resonance combined with the spin trapping technique. RESULTS: R-OOHs induce donor-dependent DC activation. Major differences were found between the limonene-OOHs. Limonene-1-OOH was stronger with respect to both frequency and magnitude of response. Using a 3D coculture model, no DC activation was detected after topical application of 0·2% limonene-OOHs (20 µg cm-2 ), while 1·2% limonene-1-OOH or 2% limonene-2-OOH induced DC activation. Furthermore, we demonstrated differences in the carbon and oxygen radicals formed from the limonene-OOHs using RHE, mimicking what may happen in vivo. CONCLUSIONS: We report clear individual differences in DC maturation induced by the most important hydroperoxides. Response rates and magnitude of response both indicate that very small structural alterations in the hydroperoxides are translated into specific DC responses. In addition, we provide more insight into the amounts of hydroperoxides that can activate DCs and induce sensitization.


Subject(s)
Dermatitis, Allergic Contact , Hydrogen Peroxide , Dendritic Cells , Dermatitis, Allergic Contact/etiology , Free Radicals , Humans , Keratinocytes , Odorants
SELECTION OF CITATIONS
SEARCH DETAIL
...