Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 15(11): e0229060, 2020.
Article in English | MEDLINE | ID: mdl-33151938

ABSTRACT

We assessed the virulence and anti-trypanosomal drug sensitivity patterns of Trypanosoma brucei rhodesiense (Tbr) isolates in the Kenya Agricultural and Livestock Research Organization-Biotechnology Research Institute (KALRO-BioRI) cryobank. Specifically, the study focused on Tbr clones originally isolated from the western Kenya/eastern Uganda focus of human African Trypanosomiasis (HAT). Twelve (12) Tbr clones were assessed for virulence using groups(n = 10) of Swiss White Mice monitored for 60 days post infection (dpi). Based on survival time, four classes of virulence were identified: (a) very-acute: 0-15, (b) acute: 16-30, (c) sub-acute: 31-45 and (d) chronic: 46-60 dpi. Other virulence biomarkers identified included: pre-patent period (pp), parasitaemia progression, packed cell volume (PCV) and body weight changes. The test Tbr clones together with KALRO-BioRi reference drug-resistant and drug sensitive isolates were then tested for sensitivity to melarsoprol (mel B), pentamidine, diminazene aceturate and suramin, using mice groups (n = 5) treated with single doses of each drug at 24 hours post infection. Our results showed that the clones were distributed among four classes of virulence as follows: 3/12 (very-acute), 3/12 (acute), 2/12 (sub-acute) and 4/12 (chronic) isolates. Differences in survivorship, parasitaemia progression and PCV were significant (P<0.001) and correlated. The isolate considered to be drug resistant at KALRO-BioRI, KETRI 2538, was confirmed to be resistant to melarsoprol, pentamidine and diminazene aceturate but it was not resistant to suramin. A cure rate of at least 80% was achieved for all test isolates with melarsoprol (1mg/Kg and 20 mg/kg), pentamidine (5 and 20 mg/kg), diminazene aceturate (5 mg/kg) and suramin (5 mg/kg) indicating that the isolates were not resistant to any of the drugs despite the differences in virulence. This study provides evidence of variations in virulence of Tbr clones from a single HAT focus and confirms that this variations is not a significant determinant of isolate sensitivity to anti-trypanosomal drugs.


Subject(s)
Trypanocidal Agents/pharmacology , Trypanosoma brucei rhodesiense/drug effects , Trypanosomiasis, African/drug therapy , Virulence/drug effects , Animals , Diminazene/analogs & derivatives , Diminazene/pharmacology , Disease Models, Animal , Drug Resistance/drug effects , Kenya , Male , Melarsoprol/pharmacology , Mice , Pentamidine/pharmacology , Suramin/pharmacology , Treatment Outcome , Trypanosomiasis, African/parasitology , Uganda
2.
PLoS Negl Trop Dis ; 7(4): e2186, 2013.
Article in English | MEDLINE | ID: mdl-23638206

ABSTRACT

BACKGROUND: Kenya and Uganda have reported different Human African Trypanosomiasis incidences in the past more than three decades, with the latter recording more cases. This cross-sectional study assessed the demographic characteristics, tsetse and trypanosomiasis control practices, socio-economic and cultural risk factors influencing Trypanosoma brucei rhodesiense (T.b.r.) infection in Teso and Busia Districts, Western Kenya and Tororo and Busia Districts, Southeast Uganda. A conceptual framework was postulated to explain interactions of various socio-economic, cultural and tsetse control factors that predispose individuals and populations to HAT. METHODS: A cross-sectional household survey was conducted between April and October 2008. Four administrative districts reporting T.b.r and lying adjacent to each other at the international boundary of Kenya and Uganda were purposely selected. Household data collection was carried out in two villages that had experienced HAT and one other village that had no reported HAT case from 1977 to 2008 in each district. A structured questionnaire was administered to 384 randomly selected household heads or their representatives in each country. The percent of respondents giving a specific answer was reported. Secondary data was also obtained on socio-economic and political issues in both countries. RESULTS: Inadequate knowledge on the disease cycle and intervention measures contributed considerable barriers to HAT, and more so in Uganda than in Kenya. Gender-associated socio-cultural practices greatly predisposed individuals to HAT. Pesticides-based crop husbandry in the 1970's reportedly reduced vector population while vegetation of coffee and banana's and livestock husbandry directly increased occurrence of HAT. Livestock husbandry practices in the villages were strong predictors of HAT incidence. The residents in Kenya (6.7%) applied chemoprophylaxis and chemotherapeutic controls against trypanosomiasis to a larger extent than Uganda (2.1%). CONCLUSION: Knowledge on tsetse and its control methods, culture, farming practice, demographic and socio-economic variables explained occurrence of HAT better than landscape features.


Subject(s)
Trypanosomiasis, African/epidemiology , Cross-Sectional Studies , Humans , Kenya/epidemiology , Risk Factors , Socioeconomic Factors , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...