Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Brain ; 17(1): 15, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38443995

ABSTRACT

Machado-Joseph disease (MJD), also known as spinocerebellar ataxia type 3, is a fatal neurodegenerative disease that causes loss of balance and motor co-ordination, eventually leading to paralysis. It is caused by the autosomal dominant inheritance of a long CAG trinucleotide repeat sequence within the ATXN3 gene, encoding for an expanded polyglutamine (polyQ) repeat sequence within the ataxin-3 protein. Ataxin-3 containing an expanded polyQ repeat is known to be highly prone to intraneuronal aggregation, and previous studies have demonstrated that protein quality control pathways, such as autophagy, are impaired in MJD patients and animal models of the disease. In this study, we tested the therapeutic potential of spermidine on zebrafish and rodent models of MJD to determine its capacity to induce autophagy and improve functional output. Spermidine treatment of transgenic MJD zebrafish induced autophagy and resulted in increased distances swum by the MJD zebrafish. Interestingly, treatment of the CMVMJD135 mouse model of MJD with spermidine added to drinking water did not produce any improvement in motor behaviour assays, neurological testing or neuropathology. In fact, wild type mice treated with spermidine were found to have decreased rotarod performance when compared to control animals. Immunoblot analysis of protein lysates extracted from mouse cerebellar tissue found little differences between the groups, except for an increased level of phospho-ULK1 in spermidine treated animals, suggesting that autophagy was indeed induced. As we detected decreased motor performance in wild type mice following treatment with spermidine, we conducted follow up studies into the effects of spermidine treatment in zebrafish. Interestingly, we found that in addition to inducing autophagy, spermidine treatment also induced apoptosis, particularly in wild type zebrafish. These findings suggest that spermidine treatment may not be therapeutically beneficial for the treatment of MJD, and in fact warrants caution due to the potential negative side effects caused by induction of apoptosis.


Subject(s)
Machado-Joseph Disease , Neurodegenerative Diseases , Humans , Animals , Mice , Spermidine/pharmacology , Spermidine/therapeutic use , Zebrafish , Apoptosis , Autophagy , Disease Models, Animal
2.
J Neurochem ; 167(5): 633-647, 2023 12.
Article in English | MEDLINE | ID: mdl-37916541

ABSTRACT

L-Dopa, while treating motor symptoms of Parkinson's disease, can lead to debilitating L-Dopa-induced dyskinesias, limiting its use. To investigate the causative relationship between neuro-inflammation and dyskinesias, we assessed if striatal M1 and M2 microglia numbers correlated with dyskinesia severity and whether the anti-inflammatories, minocycline and indomethacin, reverse these numbers and mitigate against dyskinesia. In 6-OHDA lesioned mice, we used stereology to assess numbers of striatal M1 and M2 microglia populations in non-lesioned (naïve) and lesioned mice that either received no L-Dopa (PD), remained non-dyskinetic even after L-Dopa (non-LID) or became dyskinetic after L-Dopa treatment (LID). We also assessed the effect of minocycline/indomethacin treatment on striatal M1 and M2 microglia and its anti-dyskinetic potential via AIMs scoring. We report that L-Dopa treatment leading to LIDs exacerbates activated microglia numbers beyond that associated with the PD state; the severity of LIDs is strongly correlated to the ratio of the striatal M1 to M2 microglial numbers; in non-dyskinetic mice, there is no M1/M2 microglia ratio increase above that seen in PD mice; and reducing M1/M2 microglia ratio using anti-inflammatories is anti-dyskinetic. Parkinson's disease is associated with increased inflammation, but this is insufficient to underpin dyskinesia. Given that L-Dopa-treated non-LID mice show the same ratio of M1/M2 microglia as PD mice that received no L-Dopa, and, given minocycline/indomethacin reduces both the ratio of M1/M2 microglia and dyskinesia severity, our data suggest the increased microglial M1/M2 ratio that occurs following L-Dopa treatment is a contributing cause of dyskinesias.


Subject(s)
Dyskinesias , Parkinson Disease , Rats , Mice , Animals , Levodopa/adverse effects , Parkinson Disease/drug therapy , Parkinson Disease/etiology , Microglia , Minocycline/pharmacology , Minocycline/therapeutic use , Rats, Sprague-Dawley , Corpus Striatum , Dyskinesias/complications , Oxidopamine/toxicity , Oxidopamine/therapeutic use , Inflammation/complications , Anti-Inflammatory Agents/pharmacology , Indomethacin/pharmacology , Indomethacin/therapeutic use , Antiparkinson Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...