Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Pharm Res ; 39(11): 2729-2743, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35764754

ABSTRACT

PURPOSE: The development of two novel pH-only and pH- and thermo-responsive theranostic nanoparticle (NP) formulations to deliver an anticancer drug and track the accumulation and therapeutic efficacy of the formulations through inherent fluorescence. METHODS: A pH-responsive formulation was synthesized from biodegradable photoluminescent polymer (BPLP) and sodium bicarbonate (SBC) via an emulsion technique, while a thermoresponsive BPLP copolymer (TFP) and SBC were used to synthesize a dual-stimuli responsive formulation via free radical co-polymerization. Cisplatin was employed as a model drug and encapsulated during synthesis. Size, surface charge, morphology, pH-dependent fluorescence, lower critical solution temperature (LCST; TFP NPs only), cytocompatibility and in vitro uptake, drug release kinetics and anticancer efficacy were assessed. RESULTS: While all BPLP-SBC and TFP-SBC combinations produced spherical nanoparticles of a size between 200-300 nm, optimal polymer-SBC ratios were selected for further study. Of these, the optimal BPLP-SBC formulation was found to be cytocompatible against primary Type-1 alveolar epithelial cells (AT1) up to 100 µg/mL, and demonstrated sustained drug release over 14 days, dose-dependent uptake, and marked pH-dependent A549 cancer cell killing (72 vs. 24% cell viability, at pH 7.4 vs. 6.0). The optimal TFP-SBC formulation showed excellent cytocompatibility against AT1 cells up to 500 µg/mL, sustained release characteristics, dose-dependent uptake, pH-dependent (78% at pH 7.4 vs. 64% at pH 6.0 at 37°C) and marked temperature-dependent A549 cancer cell killing (64% at 37°C vs. 37% viability at pH 6.0, 41°C). CONCLUSIONS: In all, both formulations hold promise as inherently fluorescent, stimuli-responsive theranostic platforms for passively targeted anti-cancer therapy.


Subject(s)
Antineoplastic Agents , Nanoparticles , Neoplasms , Humans , Drug Delivery Systems/methods , Neoplasms/drug therapy , Drug Liberation , Polymers/therapeutic use , Hydrogen-Ion Concentration , Drug Carriers
2.
Biomater Adv ; 134: 112589, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35525749

ABSTRACT

Bioadhesives are intended to facilitate the fast and efficient reconnection of tissues to restore their functionality after surgery or injury. The use of mussel-inspired hydrogel systems containing pendant catechol moieties is promising for tissue attachment under wet conditions. However, the adhesion strength is not yet ideal. One way to overcome these limitations is to add polymeric nanoparticles to create nanocomposites with improved adhesion characteristics. To further enhance adhesiveness, polydopamine nanoparticles with controlled size prepared using an optimized process, were combined with a mussel-inspired hyaluronic acid (HA) hydrogel to form a nanocomposite. The effects of sizes and concentrations of polydopamine nanoparticles on the adhesive profiles of mussel-inspired HA hydrogels were investigated. Results show that the inclusion of polydopamine nanoparticles in nanocomposites increased adhesion strength, as compared to the addition of poly (lactic-co-glycolic acid) (PLGA), and PLGA-(N-hydroxysuccinimide) (PLGA-NHS) nanoparticles. A nanocomposite with demonstrated cytocompatibility and an optimal lap shear strength (47 ± 3 kPa) was achieved by combining polydopamine nanoparticles of 200 nm (12.5% w/v) with a HA hydrogel (40% w/v). This nanocomposite adhesive shows its potential as a tissue glue for biomedical applications.


Subject(s)
Nanocomposites , Nanoparticles , Tissue Adhesives , Adhesives/pharmacology , Hyaluronic Acid/pharmacology , Hydrogels/pharmacology , Indoles , Nanocomposites/therapeutic use , Polymers , Tissue Adhesives/pharmacology
4.
Front Cardiovasc Med ; 8: 707897, 2021.
Article in English | MEDLINE | ID: mdl-34651022

ABSTRACT

Notch signaling is a highly conserved signaling system that is required for embryonic development and regeneration of organs. When the signal is lost, maldevelopment occurs and leads to a lethal state. Delivering exogenous genetic materials encoding Notch into cells can reestablish downstream signaling and rescue cellular functions. In this study, we utilized the negatively charged and FDA approved polymer poly(lactic-co-glycolic acid) to encapsulate Notch Intracellular Domain-containing plasmid in nanoparticles. We show that primary human umbilical vein endothelial cells (HUVECs) readily uptake the nanoparticles with and without specific antibody targets. We demonstrated that our nanoparticles are non-toxic, stable over time, and compatible with blood. We further demonstrated that HUVECs could be successfully transfected with these nanoparticles in static and dynamic environments. Lastly, we elucidated that these nanoparticles could upregulate the downstream genes of Notch signaling, indicating that the payload was viable and successfully altered the genetic downstream effects.

5.
ACS Biomater Sci Eng ; 6(12): 6831-6841, 2020 12 14.
Article in English | MEDLINE | ID: mdl-33320611

ABSTRACT

Arterial wall injury often leads to endothelium cell activation, endothelial detachment, and atherosclerosis plaque formation. While abundant research efforts have been placed on treating the end stages of the disease, no cure has been developed to repair injured and denude endothelium often occurred at an early stage of atherosclerosis. Here, a pretargeting cell delivery strategy using combined injured endothelial targeting nanoparticles and bioorthogonal click chemistry approach was developed to deliver endothelial cells to replenish the injured endothelium via a two-step process. First, nanoparticles bearing glycoprotein 1b α (Gp1bα) proteins and tetrazine (Tz) were fabricated to provide a homogeneous nanoparticle coating on an injured arterial wall via the interactions between Gp1bα and von Willebrand factor (vWF), a ligand that is present on denuded endothelium. Second, transplanted endothelium cells bearing transcyclooctene (TCO) would be quickly immobilized on the surfaces of nanoparticles via TCO:Tz reactions. In vitro binding studies under both static and flow conditions confirmed that our novel Tz-labeled Gp1bα-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles can successfully pretargeted toward the injured site and support rapid adhesion of endothelial cells from the circulation. Ex vivo results also confirm that such an approach is highly efficient in mediating the local delivery of endothelial cells at the sites of arterial injury. The results support that this pretargeting cell delivery approach may be used for repairing injured endothelium in situ at its early stage.


Subject(s)
Endothelial Cells , Nanoparticles , Cell Line, Tumor , Click Chemistry , Endothelium
6.
ACS Omega ; 5(24): 14730-14740, 2020 Jun 23.
Article in English | MEDLINE | ID: mdl-32596610

ABSTRACT

Traumatic brain injury (TBI) is known to alter the structure and function of the blood-brain barrier (BBB). Blunt force or explosive blast impacting the brain can cause neurological sequelae through the mechanisms that remain yet to be fully elucidated. For example, shockwaves propagating through the brain have been shown to create a mechanical trauma that may disrupt the BBB. Indeed, using tissue engineering approaches, the shockwave-induced mechanical injury has been shown to modulate the organization and permeability of the endothelium tight junctions. Because an injury to the brain endothelium typically induces a high expression of E-selectin, we postulated that upregulation of this protein after an injury can be exploited for diagnosis and potential therapy through targeted nanodelivery to the injured brain endothelium. To test this hypothesis, we engineered poly(lactic-co-glycolic acid) (PLGA) nanoparticles to encapsulate therapeutic nonbiologics and decorated them with ligands to specifically target the E-selectin. A high level of the conjugated nanoparticles was found inside the injured cells. Repair of the injury site was then quantitatively measured and analyzed. To summarize, exploiting the tunable properties of PLGA, a targeted drug delivery strategy has been developed and validated, which combines the specificity of ligand/receptor interaction with therapeutic reagents. Such a strategy could be used to provide a potential theragnostic approach for the treatment of modulated brain endothelium associated with TBI.

7.
Article in English | MEDLINE | ID: mdl-31824940

ABSTRACT

Cardiovascular diseases (CVD) affect a large number of the population across the globe and are the leading cause of death worldwide. Nanotechnology-based drug delivery has currently offered novel therapeutic options to treat these diseases, yet combination of both diagnostic and therapeutic abilities is further needed to understand factors and/or mechanisms that affect the treatment in order to design better therapies to challenge CVD. Biodegradable photoluminescent polylactones (BPLPLs) enable to bridge this gap as these materials exhibit a stable, long-term intrinsic fluorescence as well as offers excellent cytocompatibility and biodegradability properties. Herein, we formulated three different BPLPL based nanoparticles (NPs), including BPLP-co-poly (L-lactic acid) (BPLPL-PLLA), BPLP-co-poly (lactic-co-glycolic acid) copolymers with lactic acid and glycolic acid ratios of 75:25 (BPLPL-PLGA75:25) and 50:50 (BPLPL-PLGA50:50), and extensively evaluated their suitability as theranostic nanocarriers for CVD applications. All BPLPL based NPs were <160 nm in size and had photoluminescence characteristics and tunable release kinetics of encapsulated protein model depending on polylactones copolymerized with BPLP materials. Compared to BPLPL-PLLA NPs, BPLPL-PLGA NPs demonstrated excellent stability in various formulations including deionized water, serum, saline, and simulated body fluid over 2 days. In vitro cell studies with human umbilical vein derived endothelial cells showed dose-dependent accumulation of BPLPL-based NPs, and BPLPL-PLGA NPs presented superior compatibility with endothelial cells in terms of viability with minimal effects on cellular functions such as nitric oxide production. Furthermore, all BPLPL NPs displayed hemocompatibility with no effect on whole blood kinetic profiles, were non-hemolytic, and consisted of comparable platelet responses such as platelet adhesion and activation to those of PLGA, an FDA approved material. Overall, our results demonstrated that BPLPL-PLGA based NPs have better physical and biological properties than BPLPL-PLLA; hence they have potential to be utilized as functional nanocarriers for therapy and diagnosis of CVD.

8.
PLoS One ; 14(5): e0217640, 2019.
Article in English | MEDLINE | ID: mdl-31150477

ABSTRACT

Scaffold-based cancer cell culture techniques have been gaining prominence especially in the last two decades. These techniques can potentially overcome some of the limitations of current three-dimensional cell culture methods, such as uneven cell distribution, inadequate nutrient diffusion, and uncontrollable size of cell aggregates. Porous scaffolds can provide a convenient support for cell attachment, proliferation and migration, and also allows diffusion of oxygen, nutrients and waste. In this paper, a comparative study was done on porous poly (lactic-co-glycolic acid) (PLGA) microparticles prepared using three porogens-gelatin, sodium bicarbonate (SBC) or novel poly N-isopropylacrylamide [PNIPAAm] particles, as substrates for lung cancer cell culture. These fibronectin-coated, stable particles (19-42 µm) supported A549 cell attachment at an optimal cell seeding density of 250,000 cells/ mg of particles. PLGA-SBC porous particles had comparatively larger, more interconnected pores, and favored greater cell proliferation up to 9 days than their counterparts. This indicates that pore diameters and interconnectivity have direct implications on scaffold-based cell culture compared to substrates with minimally interconnected pores (PLGA-gelatin) or pores of uniform sizes (PLGA-PMPs). Therefore, PLGA-SBC-based tumor models were chosen for preliminary drug screening studies. The greater drug resistance observed in the lung cancer cells grown on porous particles compared to conventional cell monolayers agrees with previous literature, and indicates that the PLGA-SBC porous microparticle substrates are promising for in vitro tumor or tissue development.


Subject(s)
Cell Culture Techniques , Cell Proliferation/drug effects , Lung Neoplasms/pathology , Tissue Engineering , Cell Adhesion/drug effects , Cell Count , Cell Survival/drug effects , Cell-Derived Microparticles/drug effects , Drug Evaluation, Preclinical/methods , Drug Resistance, Neoplasm/drug effects , Gelatin/chemistry , Gelatin/pharmacology , Humans , Lung Neoplasms/drug therapy , Polylactic Acid-Polyglycolic Acid Copolymer/pharmacology , Tissue Scaffolds/chemistry
9.
Int J Pharm ; 554: 212-223, 2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30408532

ABSTRACT

Nanoparticles (NPs) can be used to locally deliver anti-restenosis drugs when they are infused directly to the injured arteries after intervention procedures such as angioplasty. However, the efficacy of transferring NPs via infusion to the arterial wall is limited, at least partially, due to poor NP retention on the inner artery wall. To improve NP retention, angioplasty balloons coated with drug-loaded NPs were fabricated via either layer-by-layer (LbL) electrostatic coating or acrylic-based hydrogel (AAH) coating techniques. Three types of NPs, namely poly (lactide-co-glycolide) (PLGA), biodegradable photo-luminescent PLGA and urethane doped polyester were studied. The transfer efficacy of NPs from various coatings to the arterial wall were further evaluated to find the optimal coating conditions. The ex vivo NP transfer studies showed significantly more NPs being transferred to the rat arterial wall after the angioplasty procedure by the AAH coating (95% transfer efficiency) compared to that of the LbL technique (60%) and dip coating (20%) under flow conditions (10 dyn/cm2). Our results suggest that the AAH coating of drug-loaded NPs on the angioplasty balloon could potentially provide superior retention of drug-loaded NPs onto the arterial wall for a better local delivery of drug-loaded NPs to effectively treat arterial diseases.


Subject(s)
Angioplasty, Balloon, Coronary/methods , Coronary Restenosis/prevention & control , Drug Delivery Systems , Nanoparticles , Animals , Arteries/metabolism , Cardiovascular Diseases/therapy , Luminescent Agents/chemistry , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Rats , Urethane/chemistry
10.
JACC Clin Electrophysiol ; 4(10): 1347-1358, 2018 10.
Article in English | MEDLINE | ID: mdl-30336881

ABSTRACT

OBJECTIVES: This study sought to develop a novel targeted delivery therapy to ablate the major atrial ganglionated plexi (GP) using magnetic nanoparticles carrying a CaCl2 payload. BACKGROUND: Prior studies indicated the role of hyperactivity of the cardiac autonomic nervous system in the genesis of atrial fibrillation. METHODS: Twenty-eight male mongrel dogs underwent a bilateral thoracotomy. CaCl2-encapsulated magnetic nanoparticles (Ca-MNP) included magnetite in a sphere of biocompatible, biodegradable poly(lactic-co-glycolic acid). A custom external electromagnet focusing the magnetic field gradient (2,600 G) on the epicardial surface of the targeted GP was used to pull Ca-MNP into and release CaCl2 within the GP. The ventricular rate slowing response to high frequency stimulation (20 Hz, 0.1 ms) of the GP was used to assess the GP function. RESULTS: The minimal effective concentration of CaCl2 to inhibit the GP function was 0.5 mmol/l. Three weeks after CaCl2 (0.5 mmol/l, n = 18 GP) or saline (n = 18 GP) microinjection into GP, the increased GP function, neural activity, and atrial fibrillation inducibility, as well as shortened effective refractory period in response to 6 h of rapid atrial pacing (1,200 beats/min) were suppressed by CaCl2 microinjection. After intracoronary infusion of Ca-MNP, the external electromagnet pulled Ca-MNP to the targeted GP and suppressed the GP function (n = 6 GP) within 15 min. CONCLUSIONS: Ca-MNP can be magnetically targeted to suppress GP function by calcium-mediated neurotoxicity. This novel approach may be used to treat arrhythmias related to hyperactivity of the cardiac autonomic nervous system, such as early stage of atrial fibrillation, with minimal myocardial injury.


Subject(s)
Atrial Fibrillation , Calcium Chloride , Drug Delivery Systems/methods , Ganglia, Autonomic/drug effects , Magnetite Nanoparticles , Animals , Atrial Fibrillation/drug therapy , Atrial Fibrillation/physiopathology , Calcium Chloride/administration & dosage , Calcium Chloride/pharmacology , Calcium Chloride/therapeutic use , Disease Models, Animal , Dogs , Heart Atria/drug effects , Heart Atria/innervation , Magnetite Nanoparticles/administration & dosage , Magnetite Nanoparticles/therapeutic use , Male
11.
J Mater Chem B ; 6(44): 7288-7297, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30906556

ABSTRACT

Sufficient and sustained anti-thrombogenicity is essential for blood-contacting materials, because blood coagulation and thrombosis caused by platelet adhesion and activation on material surfaces may lead to functional failure and even fatal outcomes. Covalently conjugating antithrombogenic moieties into polymer, instead of surface modifying or blending, can maintain the anti-thrombogenicity of polymer at a high level over a time range. In this study, series of randomly crosslinked, elastic, biodegradable polyurethanes (PU-DPA) were synthesized through a one-pot and one-step method from polycaprolactone (PCL) diol, hexamethylene diisocyanate (HDI) and anti-thrombogenic drug, dipyridamole (DPA). The mechanical properties, hydrophilicity, in vitro degradation, and anti-thrombogenicity of the resultant PU-DPA polymers can be tuned by altering the incorporated DPA amount. The surface and bulk hydrophilicity of the polyurethanes decreased with increasing hydrophobic DPA amount. All PU-DPA polymers exhibited strong mechanical properties and good elasticity. The degradation rates of the PU-DPAs decreased with increasing DPA content in both PBS and lipase/PBS solutions. Covalently incorporating DPA into the polyurethane significantly reduced the platelet adhesion and activation compared to the polyurethane without DPA, and also can achieve sustained anti-thrombogenicity. The PU-DPA films also supported the growth of human umbilical vein endothelial cells. The attractive mechanical properties, blood compatibility, and cell compatibility of this anti-thrombogenic biodegradable polyurethane indicate that it has a great potential to be utilized for blood-contacting devices, and cardiovascular tissue repair and regeneration.

12.
Sci Rep ; 7(1): 13249, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038584

ABSTRACT

Late-stage diagnosis of lung cancer occurs ~95% of the time due to late manifestation of its symptoms, necessitating rigorous treatment following diagnosis. Existing treatment methods are limited by lack of specificity, systemic toxicity, temporary remission, and radio-resistance in lung cancer cells. In this research, we have developed a folate receptor-targeting multifunctional dual drug-loaded nanoparticle (MDNP) containing a poly(N-isopropylacrylamide)-carboxymethyl chitosan shell and poly lactic-co-glycolic acid (PLGA) core for enhancing localized chemo-radiotherapy to effectively treat lung cancers. The formulation provided controlled releases of the encapsulated therapeutic compounds, NU7441 - a potent radiosensitizer, and gemcitabine - an FDA approved chemotherapeutic drug for lung cancer chemo-radiotherapy. The MDNPs showed biphasic NU7441 release and pH-dependent release of gemcitabine. These nanoparticles also demonstrated good stability, excellent hemocompatibility, outstanding in vitro cytocompatibility with alveolar Type I cells, and dose-dependent caveolae-mediated in vitro uptake by lung cancer cells. In addition, they could be encapsulated with superparamagnetic iron oxide (SPIO) nanoparticles and visualized by MRI in vivo. Preliminary in vivo results demonstrated the low toxicity of these particles and their use in chemo-radiotherapy to effectively reduce lung tumors. These results indicate that MDNPs can potentially be used as nano-vehicles to provide simultaneous chemotherapy and radiation sensitization for lung cancer treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Delivery Systems/methods , Lung Neoplasms/drug therapy , Nanoparticles/chemistry , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Chitosan/analogs & derivatives , Chitosan/chemistry , Female , Humans , Mice , Mice, Inbred BALB C , Mice, Nude
13.
Sci Rep ; 7(1): 8692, 2017 08 18.
Article in English | MEDLINE | ID: mdl-28821752

ABSTRACT

Nitric oxide (NO) has been known to promote physiological angiogenesis to treat peripheral arterial diseases (PAD) by increasing the vascular endothelial growth factor (VEGF) level in endothelial cells (ECs) and preventing platelet adherence and leukocyte chemotaxis. However, the ongoing ischemic event during peripheral ischemia produces superoxide and diminishes the NO bioavailability by forming toxic peroxynitrite anion. Here we disclose an efficacious hybrid molecule 4-(5-Amino-1,2,3-oxadiazol-3-yl)-2,2,6,6-tetramethyl-1-piperidinol (SA-2) containing both antioxidant and NO donor functionalities that provide a therapeutic level of NO necessary to promote angiogenesis and to protect ECs against hydrogen peroxide-induced oxidative stress. Compound SA-2 scavenged reactive oxygen species, inhibited proliferation and migration of smooth muscle cells (SMCs) and promoted the tube formation from ECs. Copolymer poly(lactic-co-glycolic acid) (PLGA) nanoparticles loaded with SA-2 provided a sustained release of NO over days, improved aqueous stability in serum, protected ECs against oxidative stress, and enhanced angiogenesis under stress conditions as compared to that of the control in the in vitro matrigel tube formation assay. These results indicated the potential use of SA-2 nanoparticles as an alternative therapy to treat PAD.


Subject(s)
Nitric Oxide Donors/therapeutic use , Peripheral Arterial Disease/drug therapy , Blood Vessels/drug effects , Blood Vessels/metabolism , Cell Hypoxia/drug effects , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/metabolism , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Neovascularization, Physiologic/drug effects , Nitric Oxide Donors/chemistry , Nitric Oxide Donors/pharmacology , Oxidative Stress/drug effects , Peripheral Arterial Disease/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...