Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neural Eng ; 20(1)2023 01 18.
Article in English | MEDLINE | ID: mdl-36595241

ABSTRACT

Objective.Spinal cord neuromodulation has gained much attention for demonstrating improved motor recovery in people with spinal cord injury, motivating the development of clinically applicable technologies. Among them, transcutaneous spinal cord stimulation (tSCS) is attractive because of its non-invasive profile. Many tSCS studies employ a high-frequency (10 kHz) carrier, which has been reported to reduce stimulation discomfort. However, these claims have come under scrutiny in recent years. The purpose of this study was to determine whether using a high-frequency carrier for tSCS is more comfortable at therapeutic amplitudes, which evoke posterior root-muscle (PRM) reflexes.Approach.In 16 neurologically intact participants, tSCS was delivered using a 1 ms long monophasic pulse with and without a high-frequency carrier. Stimulation amplitude and pulse duration were varied and PRM reflexes were recorded from the soleus, gastrocnemius, and tibialis anterior muscles. Participants rated their discomfort during stimulation from 0 to 10 at PRM reflex threshold.Main Results.At PRM reflex threshold, the addition of a high-frequency carrier (0.87 ± 0.2) was equally comfortable as conventional stimulation (1.03 ± 0.18) but required approximately double the charge to evoke the PRM reflex (conventional: 32.4 ± 9.2µC; high-frequency carrier: 62.5 ± 11.1µC). Strength-duration curves for tSCS with a high-frequency carrier had a rheobase that was 4.8× greater and a chronaxie that was 5.7× narrower than the conventional monophasic pulse, indicating that the addition of a high-frequency carrier makes stimulation less efficient in recruiting neural activity in spinal roots.Significance.Using a high-frequency carrier for tSCS is equally as comfortable and less efficient as conventional stimulation at amplitudes required to stimulate spinal dorsal roots.


Subject(s)
Spinal Cord Injuries , Spinal Cord Stimulation , Humans , Spinal Cord Stimulation/methods , Spinal Cord/physiology , Spinal Nerve Roots/physiology , Muscle, Skeletal/physiology
2.
J Proteomics ; 189: 34-38, 2018 10 30.
Article in English | MEDLINE | ID: mdl-29572161

ABSTRACT

The pattern recognition receptors (PRRs) facilitate an organism's first line of defense against interlopers and shape the overall innate immune response through sensing and sampling pathogen-associated molecular patterns (PAMPs). The Toll-like receptor (TLR) family is the prototypic PRR family. Upon recognition of PAMPs, TLRs promote MyD88 dependent and independent responses. Understanding how different PAMPs are recognized by their specific TLRs and how pathogen recognition initiates immune activation is an intense area of research. Previously, we have reported the discovery of the temporal changes in signaling cascades of macrophage proteome and secretome post-stimulation with three different PAMPs. To extend our global proteomics approach to targeted protein abundance quantification, we describe the macrophage secretome targeted proteomics assay. We chose three different pathogens that specifically stimulate diverse TLRs (TLR2, TLR4, and TLR7). Using a simple targeted proteomics approach, combining data-dependent acquisition with an inclusion list, an array of cytokines, chemokines, and transcription factors can be profiled for their secretome abundance. This strategy facilitates the profiling and validation of pathogen-specific temporal changes in the macrophage secretome.


Subject(s)
Host-Pathogen Interactions/physiology , Macrophage Activation/physiology , Macrophages/metabolism , Proteome/metabolism , Proteomics/methods , Secretory Pathway/physiology , Animals , Cytokines/metabolism , Humans , Immunity, Innate , Ligands , Macrophages/immunology , Proteome/analysis , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...