Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Physiol Biochem ; 44(1): 25-37, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16545573

ABSTRACT

The phytotoxicity imposed by cadmium (Cd) and its detoxifying responses of Bacopa monnieri L. have been investigated. Effect on biomass, photosynthetic pigments and protein level were evaluated as gross effect, while lipid peroxidation and electrolyte leakage reflected oxidative stress. Induction of phytochelatins and enzymatic and non-enzymatic antioxidants were monitored as plants primary and secondary metal detoxifying responses, respectively. Plants accumulated substantial amount of Cd in different plant parts (root, stem and leaf), the maximum being in roots (9240.11 microg g(-1) dw after 7 d at 100 microM). Cadmium induced oxidative stress, which was indicated by increase in lipid peroxidation and electrical conductivity with increase in metal concentration and exposure duration. Photosynthetic pigments showed progressive decline while protein showed slight increase at lower concentrations. Enzymes viz., superoxide dismutase (SOD, EC 1.15.1.1), guaiacol peroxidase (GPX, EC 1.11.1.7) ascorbate peroxidase (APX, EC 1.11.1.11) and glutathione reductase (GR, EC 1.6.4.2) showed stimulation except catalase (CAT, EC 1.11.1.6) which showed declining trend. Initially, an enhanced level of cysteine, glutathione and non-protein thiols was observed, which depleted with increase in exposure concentration and duration. Phytochelatins induced significantly at 10 microM Cd in roots and at 50 microM Cd in leaves. The phytochelatins decreased in roots at 50 microM Cd, which may be correlated with reduced level of GSH, probably due to reduced GR activity, which exerted increased oxidative stress as also evident by the phenotypic changes in the plant like browning of roots and slight yellowing of leaves. Thus, besides synthesis of phytochelatins, availability of GSH and concerted activity of GR seem to play a central role for Bacopa plants to combat oxidative stress caused by metal and to detoxify it. Plants ability to accumulate and tolerate high amount of Cd through enhanced level of PCs and various antioxidants suggest it to be a suitable candidate for phytoremediation.


Subject(s)
Antioxidants/metabolism , Bacopa/physiology , Cadmium/toxicity , Glutathione/biosynthesis , Bacopa/chemistry , Bacopa/growth & development , Cadmium/analysis , Enzyme Activation , Oxidative Stress , Phytochelatins , Plant Leaves/drug effects , Plant Leaves/enzymology , Plant Leaves/growth & development , Plant Roots/drug effects , Plant Roots/enzymology , Plant Roots/growth & development , Plant Stems/drug effects , Plant Stems/enzymology , Plant Stems/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...