Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Health Geogr ; 23(1): 11, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741103

ABSTRACT

A growing number of studies have linked the incidence of leptospirosis with the occurrence of flood events. Nevertheless, the interaction between flood and leptospirosis has not been extensively studied to understand the influence of flood attributes in inducing new cases. This study reviews leptospirosis cases in relation to multiple flood occurrences in Kerala, India. Leptospirosis data were obtained for three years: 2017 (non-flood year) and two years with flooding-2018 (heavy flooding) and 2019 (moderate flooding). We considered the severity of flood events using the discharge, duration and extent of each flooding event and compared them with the leptospirosis cases. The distribution of cases regarding flood discharge and duration was assessed through descriptive and spatiotemporal analyses, respectively. Furthermore, cluster analyses and spatial regression were completed to ascertain the relationship between flood extent and the postflood cases. This study found that postflood cases of leptospirosis can be associated with flood events in space and time. The total cases in both 2018 and 2019 increased in the post-flood phase, with the increase in 2018 being more evident. Unlike the 2019 flood, the flood of 2018 is a significant spatial indicator for postflood cases. Our study shows that flooding leads to an increase in leptospirosis cases, and there is stronger evidence for increased leptospirosis cases after a heavy flood event than after a moderate flooding event. Flood duration may be the most important factor in determining the increase in leptospirosis infections.


Subject(s)
Disease Outbreaks , Floods , Leptospirosis , Leptospirosis/epidemiology , India/epidemiology , Humans , Incidence , Spatio-Temporal Analysis
2.
GeoJournal ; 88(3): 2449-2470, 2023.
Article in English | MEDLINE | ID: mdl-36157197

ABSTRACT

Dengue fever, which is spread by Aedes mosquitoes, has claimed many lives in Kerala, with the Thiruvananthapuram district bearing the brunt of the toll. This study aims to demarcate the dengue risk zones in Thiruvananthapuram district using the analytical hierarchy process (AHP) and the fuzzy-AHP (F-AHP) methods. For the risk modelling, geo-environmental factors (normalized difference vegetation index, land surface temperature, topographic wetness index, land use/land cover types, elevation, normalized difference built-up index) and demographic factors (household density, population density) have been utilized. The ArcGIS 10.8 and ERDAS Imagine 8.4 software tools have been used to derive the risk zone maps. The area of the risk maps is classified into five zones. The dengue risk zone maps were validated using dengue case data collected from the Integrated Disease Surveillance Programme portal. From the receiver operating characteristic (ROC) curve analysis and the area under the ROC curve (AUC) values, it is proved that the F-AHP method (AUC value of 0.971) has comparatively more prediction capability than the AHP method (AUC value of 0.954) in demarcating the dengue risk zones. Also, based on the comparison of the risk zone map with actual case data, it was confirmed that around 82.87% of the dengue cases occurred in the very high and high-risk zones, thus proving the efficacy of the model. According to the dengue risk map prepared using the F-AHP model, 9.09% of the area of Thiruvananthapuram district is categorized as very high risk. The prepared dengue risk maps will be helpful for decision-makers, staff with the health, and disaster management departments in adopting effective measures to prevent the risks of dengue spread and thereby minimize loss of life.

3.
Stoch Environ Res Risk Assess ; 37(2): 527-556, 2023.
Article in English | MEDLINE | ID: mdl-35880038

ABSTRACT

Flooding is one of the most destructive natural catastrophes that can strike anywhere in the world. With the recent, but frequent catastrophic flood events that occurred in the narrow stretch of land in southern India, sandwiched between the Western Ghats and the Arabian Sea, this study was initiated. The goal of this research is to identify flood-vulnerable zones in this area by making the local self governing bodies as the mapping unit. This study also assessed the predictive accuracy of analytical hierarchy process (AHP) and fuzzy-analytical hierarchy process (F-AHP) models. A total of 20 indicators (nine physical-environmental variables and 11 socio-economic variables) have been considered for the vulnerability modelling. Flood-vulnerability maps, created using remotely sensed satellite data and geographic information systems, was divided into five zones. AHP and F-AHP flood vulnerability models identified 12.29% and 11.81% of the area as very high-vulnerable zones, respectively. The receiver operating characteristic (ROC) curve is used to validate these flood vulnerability maps. The flood vulnerable maps, created using the AHP and F-AHP methods, were found to be outstanding based on the area under the ROC curve (AUC) values. This demonstrates the effectiveness of these two models. The results of AUC for the AHP and F-AHP models were 0.946 and 0.943, respectively, articulating that the AHP model is more efficient than its chosen counterpart in demarcating the flood vulnerable zones. Decision-makers and land-use planners will find the generated vulnerable zone maps useful, particularly in implementing flood mitigation plans.

4.
Geohealth ; 5(10): e2020GH000378, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34693183

ABSTRACT

Many of the respiratory pathogens show seasonal patterns and association with environmental factors. In this article, we conducted a cross-sectional analysis of the influence of environmental factors, including climate variability, along with development indicators on the differential global spread and fatality of COVID-19 during its early phase. Global climate data we used are monthly averaged gridded data sets of temperature, humidity and temperature anomaly. We used Human Development Index (HDI) to account for all nation wise socioeconomic factors that can affect the reporting of cases and deaths and build a stepwise negative binomial regression model. In the absence of a development indicator, all environmental variables excluding the specific humidity have a significant association with the spread and mortality of COVID-19. Temperature has a weak negative association with COVID-19 mortality. However, HDI is shown to confound the effect of temperature on the reporting of the disease. Temperature anomaly, which is being regarded as a global warming indicator, is positively associated with the pandemic's spread and mortality. Viewing newer infectious diseases like SARS-CoV-2 from the perspective of climate variability has a lot of public health implications, and it necessitates further research.

SELECTION OF CITATIONS
SEARCH DETAIL
...