Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139560

ABSTRACT

Pressure-sensitive paint (PSP) has received significant attention for capturing surface pressure in recent years. One major source of uncertainty in PSP measurements, temperature dependency, stems from the fundamental photophysical process that allows PSP to extract pressure information. The motion-capturing PSP method, which involves two luminophores, is introduced as a method to reduce the measurement uncertainty due to temperature dependency. A theoretical model for the pressure uncertainty due to temperature dependency is proposed and demonstrated using a static pressure measurement with an applied temperature gradient. The experimental validation of the proposed model shows that the motion-capturing PSP method reduces the temperature dependency by 37.7% compared to the conventional PSP method. The proposed model also proves that a PSP with zero temperature dependency is theoretically possible.

2.
Sensors (Basel) ; 21(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34372426

ABSTRACT

An artificial neural network (ANN) was constructed and trained for predicting pressure sensitivity using an experimental dataset consisting of luminophore content and paint thickness as chemical and physical inputs. A data augmentation technique was used to increase the number of data points based on the limited experimental observations. The prediction accuracy of the trained ANN was evaluated by using a metric, mean absolute percentage error. The ANN predicted pressure sensitivity to luminophore content and to paint thickness, within confidence intervals based on experimental errors. The present approach of applying ANN and the data augmentation has the potential to predict pressure-sensitive paint (PSP) characterizations that improve the performance of PSP for global surface pressure measurements.


Subject(s)
Neural Networks, Computer , Paint , Humans
3.
Materials (Basel) ; 12(17)2019 Aug 28.
Article in English | MEDLINE | ID: mdl-31466232

ABSTRACT

Ice accretion is detrimental to numerous industries, including infrastructure, power generation, and aviation applications. Currently, some of the leading de-icing technologies utilize a heating source coupled with a superhydrophobic surface. This superhydrophobic surface reduces the power consumption by the heating element. Further power consumption reduction in these systems can be achieved through an increase in passive heat generation through absorption of solar radiation. In this work, a superhydrophobic surface with increased solar radiation absorption is proposed and characterized. An existing icephobic surface based on a polytetrafluoroethylene (PTFE) microstructure was modified through the addition of graphite microparticles. The proposed surface maintains hydrophobic performance nearly identical to the original superhydrophobic coating as demonstrated by contact and roll-off angles within 2.5% of the original. The proposed graphite coating also has an absorptivity coefficient under exposure to solar radiation 35% greater than typical PTFE-based coatings. The proposed coating was subsequently tested in an icing wind tunnel, and showed an 8.5% and 50% decrease in melting time for rime and glaze ice conditions, respectively.

SELECTION OF CITATIONS
SEARCH DETAIL
...