Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Neurosci ; 17: 1134757, 2023.
Article in English | MEDLINE | ID: mdl-37065907

ABSTRACT

Throughout its modern history, sleep research has been concerned with both the benefits of sleep and the deleterious impact of sleep disruption for cognition, behavior, and performance. When more specifically examining the impact of sleep on memory and learning, however, research has overwhelmingly focused on how sleep following learning facilitates memory, with less attention paid to how lack of sleep prior to learning can disrupt subsequent memory. Although this imbalance in research emphasis is being more frequently addressed by current investigators, there is a need for a more organized approach to examining the effect of sleep deprivation before learning. The present review briefly describes the generally accepted approach to analyzing effects of sleep deprivation on subsequent memory and learning by means of its effects on encoding. Then, we suggest an alternative framework with which to understand sleep loss and memory in terms of temporary amnesia from sleep loss (TASL). The review covers the well-characterized properties of amnesia arising from medial temporal lobe lesions and shows how the pattern of preserved and impaired aspects of memory in amnesia may also be appearing during sleep loss. The view of the TASL framework is that amnesia and the amnesia-like deficits observed during sleep deprivation not only affect memory processes but will also be apparent in cognitive processes that rely on those memory processes, such as decision-making. Adoption of the TASL framework encourages movement away from traditional explanations based on narrowly defined domains of memory functioning, such as encoding, and taking instead a more expansive view of how brain structures that support memory, such as the hippocampus, interact with higher structures, such as the prefrontal cortex, to produce complex cognition and behavioral performance, and how this interaction may be compromised by sleep disruption.

2.
J Sleep Res ; 32(2): e13744, 2023 04.
Article in English | MEDLINE | ID: mdl-36205178

ABSTRACT

Sleep deprivation consistently decreases vigilant attention, which can lead to difficulty in performing a variety of cognitive tasks. However, sleep-deprived individuals may be able to compensate for degraded vigilant attention by means of top-down attentional control. We employed a novel task to measure the degree to which individuals overcome impairments in vigilant attention by using top-down attentional control, the Flexible Attentional Control Task (FACT). The FACT is a two-choice task that has trials with valid, invalid, and neutral cues, along with an unexpected switch in the probability of cue validity about halfway in the task. The task provides indices that isolate performance components reflecting vigilant attention and top-down attentional control. Twelve healthy young adults completed an in-laboratory study. After a baseline day, the subjects underwent 39 hours of total sleep deprivation (TSD), followed by a recovery day. The FACT was administered at 03:00, 11:00, and 19:00 during sleep deprivation (TSD condition) and at 11:00 and 19:00 after baseline sleep and at 11:00 after recovery sleep (rested condition). When rested, the subjects demonstrated both facilitation and interference effects on cued trials. While sleep deprived, the subjects showed vigilant attention deficits on neutral cue trials, and an impaired ability to reduce these deficits by using predictive contextual cues. Our results indicate that the FACT can dissociate vigilant attention from top-down attentional control. Furthermore, they show that during sleep deprivation, contextual cues help individuals to compensate partially for impairments in vigilant attention, but the effectiveness of top-down attentional control is diminished.


Subject(s)
Sleep Deprivation , Sleep , Young Adult , Humans , Sleep Deprivation/psychology , Wakefulness , Rest , Reaction Time
3.
Front Behav Neurosci ; 16: 885302, 2022.
Article in English | MEDLINE | ID: mdl-35860724

ABSTRACT

Emotion is characterized by dimensions of affective valence and arousal, either or both of which may be altered by sleep loss, thereby contributing to impaired regulatory functioning. Controlled laboratory studies of total sleep deprivation (TSD) generally show alterations in physiological arousal and affective state, but the relationship of affect and emotion with physiological arousal during TSD has not been well characterized. Established methods for examining physiological arousal include electrodermal activity (EDA) measures such as non-specific skin conductance responses (NSSCR) and skin conductance level (SCL). These measures are robust physiological markers of sympathetic arousal and have been linked to changes in experienced emotion. To explore the link between physiological arousal and affect during sleep deprivation, we investigated individuals' EDA under TSD and its relationship to self-reported affect. We also investigated the relationship of EDA to two other measures known to be particularly sensitive to the arousal-decreasing effects of TSD, i.e., self-reported sleepiness and performance on a vigilant attention task. Data were drawn from three previously published laboratory experiments where participants were randomly assigned to either well-rested control (WRC) or 38 h of TSD. In this data set, comprising one of the largest samples ever used in an investigation of TSD and EDA (N = 193 with 74 WRC and 119 TSD), we found the expected impairing effects of TSD on self-reported affect and sleepiness and on vigilant attention. Furthermore, we found that NSSCR, but not SCL, were sensitive to TSD, with significant systematic inter-individual differences. Across individuals, the change in frequency of NSSCR during TSD was not predictive of the effect of TSD on affect, sleepiness, or vigilant attention, nor was it related to these outcomes during the rested baseline. Our findings indicate that while physiological arousal, as measured by EDA, may be useful for assessing TSD-related changes in non-specific arousal at the group level, it is not associated with individuals' self-reported affect at rest nor their change in affect during TSD. This suggests that an essential aspect of the relationship between physiological arousal and self-reported affect is not well captured by EDA as measured by NSSCR.

4.
PLoS One ; 16(9): e0256983, 2021.
Article in English | MEDLINE | ID: mdl-34473768

ABSTRACT

Sleep loss is reported to influence affective processing, causing changes in overall mood and altering emotion regulation. These aspects of affective processing are seldom investigated together, making it difficult to determine whether total sleep deprivation has a global effect on how affective stimuli and emotions are processed, or whether specific components of affective processing are affected selectively. Sixty healthy adults were recruited for an in-laboratory study and, after a monitored night of sleep and laboratory acclimation, randomly assigned to either a total sleep deprivation condition (n = 40) or a rested control condition (n = 20). Measurements of mood, vigilant attention to affective stimuli, affective working memory, affective categorization, and emotion regulation were taken for both groups. With one exception, measures of interest were administered twice: once at baseline and again 24 hours later, after the sleep deprived group had spent a night awake (working memory was assessed only after total sleep deprivation). Sleep deprived individuals experienced an overall reduction in positive affect with no significant change in negative affect. Despite the substantial decline in positive affect, there was no evidence that processing affectively valenced information was biased under total sleep deprivation. Sleep deprived subjects did not rate affective stimuli differently from rested subjects, nor did they show sleep deprivation-specific effects of affect type on vigilant attention, working memory, and categorization tasks. However, sleep deprived subjects showed less effective regulation of negative emotion. Overall, we found no evidence that total sleep deprivation biased the processing of affective stimuli in general. By contrast, total sleep deprivation appeared to reduce controlled processing required for emotion regulation.


Subject(s)
Affective Symptoms/psychology , Down-Regulation/physiology , Emotional Regulation/physiology , Sleep Deprivation/psychology , Sleep/physiology , Adult , Affect/physiology , Attention/physiology , Female , Healthy Volunteers , Humans , Male , Memory, Short-Term/physiology , Random Allocation , Wakefulness/physiology , Young Adult
5.
Sleep ; 44(8)2021 08 13.
Article in English | MEDLINE | ID: mdl-33940625

ABSTRACT

Binding information to its context in long-term memory is critical for many tasks, including memory tasks and decision making. Failure to associate information to its context could be an important aspect of sleep deprivation effects on cognition, but little is known about binding problems from being sleep-deprived at the time of encoding. We studied how sleep deprivation affects binding using a well-established paradigm testing the ability to remember auditorily presented words (items) and their speakers (source context). In a laboratory study, 68 healthy young adults were randomly assigned to total sleep deprivation or a well-rested control condition. Participants completed an affective item and source memory task twice: once after 7-hour awake during baseline and again 24 hours later, after nearly 31 hours awake in the total sleep deprivation condition or 7 hours awake in the control condition. Participants listened to negative, positive, and neutral words presented by a male or female speaker and were immediately tested for recognition of the words and their respective speakers. Recognition of items declined during sleep deprivation, but even when items were recognized accurately, recognition of their associated sources also declined. Negative items were less bound with their sources than positive or neutral items, but sleep deprivation did not significantly affect this pattern. Our findings indicate that learning while sleep-deprived disrupts the binding of information to its context independent of item valence. Such binding failures may contribute to sleep deprivation effects on tasks requiring the ability to bind new information together in memory.


Subject(s)
Sleep Deprivation , Sleep , Female , Humans , Male , Mental Recall , Recognition, Psychology , Wakefulness , Young Adult
6.
Front Psychol ; 12: 785283, 2021.
Article in English | MEDLINE | ID: mdl-35002876

ABSTRACT

Black Americans who are perceived as more racially phenotypical-that is, who possess more physical traits that are closely associated with their race-are more often associated with racial stereotypes. These stereotypes, including assumptions about criminality, can influence how Black Americans are treated by the legal system. However, it is unclear whether other forms of racial stereotypicality, such as a person's way of speaking, also activate stereotypes about Black Americans. We investigated the links between speech stereotypicality and racial stereotypes (Experiment 1) and racial phenotype bias (Experiment 2). In Experiment 1, participants listened to audio recordings of Black speakers and rated how stereotypical they found the speaker, the likely race and nationality of the speaker, and indicated which adjectives the average person would likely associate with this speaker. In Experiment 2, participants listened to recordings of weakly or strongly stereotypical Black American speakers and indicated which of two faces (either weakly or strongly phenotypical) was more likely to be the speaker's. We found that speakers whose voices were rated as more highly stereotypical for Black Americans were more likely to be associated with stereotypes about Black Americans (Experiment 1) and with more stereotypically Black faces (Experiment 2). These findings indicate that speech stereotypicality activates racial stereotypes as well as expectations about the stereotypicality of an individual's appearance. As a result, the activation of stereotypes based on speech may lead to bias in suspect descriptions or eyewitness identifications.

7.
PLoS One ; 13(6): e0198646, 2018.
Article in English | MEDLINE | ID: mdl-29874277

ABSTRACT

For nearly 50 years, psychologists have studied prospective memory, or the ability to execute delayed intentions. Yet, there remains a gap in understanding as to whether initial encoding of the intention must be elaborative and strategic, or whether some components of successful encoding can occur in a perfunctory, transient manner. In eight studies (N = 680), we instructed participants to remember to press the Q key if they saw words representing fruits (cue) during an ongoing lexical decision task. They then typed what they were thinking and responded whether they encoded fruits as a general category, as specific exemplars, or hardly thought about it at all. Consistent with the perfunctory view, participants often reported mind wandering (42.9%) and hardly thinking about the prospective memory task (22.5%). Even though participants were given a general category cue, many participants generated specific category exemplars (34.5%). Bayesian analyses of encoding durations indicated that specific exemplars came to mind in a perfunctory manner rather than via strategic, elaborative mechanisms. Few participants correctly guessed the research hypotheses and changing from fruit category cues to initial-letter cues eliminated reports of specific exemplar generation, thereby arguing against demand characteristics in the thought probe procedure. In a final experiment, encoding duration was unrelated to prospective memory performance; however, specific-exemplar encoders outperformed general-category encoders with no ongoing task monitoring costs. Our findings reveal substantial variability in intention encoding, and demonstrate that some components of prospective memory encoding can be done "in passing."


Subject(s)
Memory, Episodic , Thinking/physiology , Adult , Bayes Theorem , Cues , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...