Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Control Release ; 352: 328-337, 2022 12.
Article in English | MEDLINE | ID: mdl-36280153

ABSTRACT

Chemotherapy for peritoneal dissemination is poorly effective owing to limited drug transfer from the blood to the intraperitoneal (i.p.) compartment after intravenous (i.v.) administration. i.p. chemotherapy has been investigated to improve drug delivery to tumors; however, the efficacy continues to be debated. As anticancer drugs have low molecular weight and are rapidly excreted through the peritoneal blood vessels, maintaining the i.p. concentration as high as expected is a challenge. In this study, we examined whether i.p. administration is an efficient route of administration of high-molecular-weight immune checkpoint inhibitors (ICIs) for the treatment of peritoneal dissemination using a model of peritoneal disseminated carcinoma. After i.p. administration, the amount of anti-PD-L1 antibody transferred into i.p. tumors increased by approximately eight folds compared to that after i.v. administration. Intratumoral distribution analysis revealed that anti-PD-L1 antibodies were delivered directly from the i.p. space to the surface of tumor tissue, and that they deeply penetrated the tumor tissues after i.p. administration; in contrast, after i.v. administration, anti-PD-L1 antibodies were only distributed around blood vessels in tumor tissues via the enhanced permeability and retention (EPR) effect. Owing to the enhanced delivery, the therapeutic efficacy of anti-PD-L1 antibody in the peritoneal dissemination models was also improved after i.p. administration compared to that after i.v. administration. This is the first study to clearly demonstrate an EPR-independent delivery of ICIs to i.p. tumors by which ICIs were delivered in a massive amount to the tumor tissue via direct penetration after i.p. administration.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/drug therapy , Lung Neoplasms/drug therapy , Antibodies , Permeability
2.
J Immunother Cancer ; 8(1)2020 02.
Article in English | MEDLINE | ID: mdl-32041818

ABSTRACT

BACKGROUND: Recently, antiprogrammed cell death protein 1 (aPD-1) and antiprogrammed death-ligand 1 (aPD-L1) monoclonal antibodies (mAbs) have been approved. Even though aPD-1 and aPD-L1 mAbs target the same PD-1/PD-L1 axis, it is still unclear whether both mAbs exert equivalent pharmacological activity in patients who are sensitive to PD-1/PD-L1 blockade therapy, as there is no direct comparison of their pharmacokinetics (PK) and antitumor effects. Therefore, we evaluated the differences between both mAbs in PK and therapeutic effects in PD-1/PD-L1 blockade-sensitive mouse models. METHODS: Herein, murine breast MM48 and colon MC38 xenografts were used to analyze the pharmacological activity of aPD-1 and aPD-L1 mAbs. The PK of the mAbs in the tumor-bearing mice was investigated at low and high doses using two radioisotopes (Indium-111 and Iodine-125) to evaluate the accumulation and degradation of the mAbs. RESULTS: aPD-1 mAb showed antitumor effect in a dose-dependent manner, indicating that the tumor model was sensitive to PD-1/PD-L1 blockade therapy, whereas aPD-L1 mAb failed to suppress tumor growth. The PK study showed that aPD-L1 mAb was accumulated largely in normal organs such as the spleen, liver, and kidney, resulting in low blood concentration and low distributions to tumors at a low dose, even though the tumors expressed PD-L1. Sufficient accumulation of aPD-L1 mAb in tumors was achieved by administration at a high dose owing to the saturation of target-mediated binding in healthy organs. However, degradation of aPD-L1 mAb in tumors was greater than that of aPD-1 mAb, which resulted in poor outcome presumably due to less inhibition of PD-L1 by aPD-L1 mAb than that of PD-1 by aPD-1 mAb. CONCLUSION: According to the PK studies, aPD-1 mAb showed linear PK, whereas aPD-L1 mAb showed non-linear PK between low and high doses. Collectively, the poor PK characteristics of aPD-L1 mAb caused lower antitumor activity than of aPD-1 mAb. These results clearly indicated that aPD-L1 mAb required higher doses than aPD-1 mAb in clinical setting. Thus, targeting of PD-1 would be more advantageous than PD-L1 in terms of PK.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacokinetics , B7-H1 Antigen/antagonists & inhibitors , Immune Checkpoint Inhibitors/pharmacokinetics , Mammary Neoplasms, Experimental/drug therapy , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Area Under Curve , Cell Line, Tumor , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Half-Life , Humans , Immune Checkpoint Inhibitors/administration & dosage , Mammary Neoplasms, Experimental/immunology , Mammary Neoplasms, Experimental/pathology , Mice , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...