Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Chaos ; 33(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37712918

ABSTRACT

We present a novel method for analyzing brain functional networks using functional magnetic resonance imaging data, which involves utilizing consensus networks. In this study, we compare our approach to a standard group-based method for patients diagnosed with major depressive disorder (MDD) and a healthy control group, taking into account different levels of connectivity. Our findings demonstrate that the consensus network approach uncovers distinct characteristics in network measures and degree distributions when considering connection strengths. In the healthy control group, as connection strengths increase, we observe a transition in the network topology from a combination of scale-free and random topologies to a small-world topology. Conversely, the MDD group exhibits uncertainty in weak connections, while strong connections display small-world properties. In contrast, the group-based approach does not exhibit significant differences in behavior between the two groups. However, it does indicate a transition in topology from a scale-free-like structure to a combination of small-world and scale-free topologies. The use of the consensus network approach also holds immense potential for the classification of MDD patients, as it unveils substantial distinctions between the two groups.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Consensus , Magnetic Resonance Imaging , Brain/diagnostic imaging , Uncertainty
2.
Chaos ; 33(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37318340

ABSTRACT

We address the interpretability of the machine learning algorithm in the context of the relevant problem of discriminating between patients with major depressive disorder (MDD) and healthy controls using functional networks derived from resting-state functional magnetic resonance imaging data. We applied linear discriminant analysis (LDA) to the data from 35 MDD patients and 50 healthy controls to discriminate between the two groups utilizing functional networks' global measures as the features. We proposed the combined approach for feature selection based on statistical methods and the wrapper-type algorithm. This approach revealed that the groups are indistinguishable in the univariate feature space but become distinguishable in a three-dimensional feature space formed by the identified most important features: mean node strength, clustering coefficient, and the number of edges. LDA achieves the highest accuracy when considering the network with all connections or only the strongest ones. Our approach allowed us to analyze the separability of classes in the multidimensional feature space, which is critical for interpreting the results of machine learning models. We demonstrated that the parametric planes of the control and MDD groups rotate in the feature space with increasing the thresholding parameter and that their intersection increases with approaching the threshold of 0.45, for which classification accuracy is minimal. Overall, the combined approach for feature selection provides an effective and interpretable scenario for discriminating between MDD patients and healthy controls using measures of functional connectivity networks. This approach can be applied to other machine learning tasks to achieve high accuracy while ensuring the interpretability of the results.


Subject(s)
Depressive Disorder, Major , Humans , Brain Mapping/methods , Support Vector Machine , Machine Learning , Algorithms
3.
Article in English | MEDLINE | ID: mdl-37047950

ABSTRACT

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed. Our findings are based on the results of PubMed search queries and analysis of the number of papers obtained by the different search queries. Our goal is to explore how are the AI-based methods used in healthcare research, which approaches and techniques are the most popular, and to discuss the potential reasoning behind the obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software, we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with the thorough analysis of publication activity in various categories of medical AI research, including research on different AI-based methods applied to different types of medical data. We analyzed the results of query processing in the PubMed database over the past 5 years obtained via a specifically designed strategy for generating search queries based on the thorough selection of keywords from different categories of interest. We provide a comprehensive analysis of existing applications of AI-based methods to medical data of different modalities, including the context of various medical fields and specific diseases that carry the greatest danger to the human population.


Subject(s)
Biomedical Research , Medicine , Humans , Artificial Intelligence , Health Services Research , Software
4.
Sci Rep ; 12(1): 11474, 2022 07 06.
Article in English | MEDLINE | ID: mdl-35794223

ABSTRACT

Epilepsy is one of the brightest manifestations of extreme behavior in living systems. Extreme epileptic events are seizures, that arise suddenly and unpredictably. Usually, treatment strategies start by analyzing brain activity during the seizures revealing their type and onset mechanisms. This approach requires collecting data for a representative number of events which is only possible during the continuous EEG monitoring over several days. A big part of the further analysis is searching for seizures on these recordings. An experienced medical specialist spends hours checking the data of a single patient and needs assistance from the automative systems for seizure detection. Machine learning methods typically address this issue in a supervised fashion and exhibit a lack of generalization. The extreme value theory allows addressing this issue with the unsupervised machine learning methods of outlier detection. Here, we make the first step toward using this approach for the seizure detection. Based on our recent work, we specified the EEG features showing extreme behavior during seizures and loaded them to the one-class SVM, a popular outlier detection algorithm. Testing the proposed approach on 83 patients, we reported 77% sensitivity and 12% precision. In 60 patients, sensitivity was 100%. In the rest 23 subjects, we observed deviations from the extreme behavior. The one-class SVM used a single subject's data for training; therefore, it was stable against between-subject variability. Our results demonstrate an effective convergence between the extreme value theory, a physical concept, and the outlier detection algorithms, a machine learning concept, toward solving the meaningful task of medicine.


Subject(s)
Electroencephalography , Epilepsy , Algorithms , Electroencephalography/methods , Epilepsy/diagnosis , Humans , Machine Learning , Seizures/diagnosis
5.
Chaos ; 32(3): 033117, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35364843

ABSTRACT

We have proposed and studied both numerically and experimentally a multistable system based on a self-sustained Van der Pol oscillator coupled to passive oscillatory circuits. The number of passive oscillators determines the number of multistable oscillatory regimes coexisting in the proposed system. It is shown that our system can be used in robotics applications as a simple model for a central pattern generator (CPG). In this case, the amplitude and phase relations between the active and passive oscillators control a gait, which can be adjusted by changing the system control parameters. Variation of the active oscillator's natural frequency leads to hard switching between the regimes characterized by different phase shifts between the oscillators. In contrast, the external forcing can change the frequency and amplitudes of oscillations, preserving the phase shifts. Therefore, the frequency of the external signal can serve as a control parameter of the model regime and realize a feedback in the proposed CPG depending on the environmental conditions. In particular, it allows one to switch the regime and change the velocity of the robot's gate and tune the gait to the environment. We have also shown that the studied oscillatory regimes in the proposed system are robust and not affected by external noise or fluctuations of the system parameters. Moreover, using the proposed scheme, we simulated the type of bipedal locomotion, including walking and running.


Subject(s)
Central Pattern Generators , Robotics , Feedback , Gait , Walking
6.
Sensors (Basel) ; 21(18)2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34577225

ABSTRACT

In this paper, we used an EEG system to monitor and analyze the cortical activity of children and adults at a sensor level during cognitive tasks in the form of a Schulte table. This complex cognitive task simultaneously involves several cognitive processes and systems: visual search, working memory, and mental arithmetic. We revealed that adults found numbers on average two times faster than children in the beginning. However, this difference diminished at the end of table completion to 1.8 times. In children, the EEG analysis revealed high parietal alpha-band power at the end of the task. This indicates the shift from procedural strategy to less demanding fact-retrieval. In adults, the frontal beta-band power increased at the end of the task. It reflects enhanced reliance on the top-down mechanisms, cognitive control, or attentional modulation rather than a change in arithmetic strategy. Finally, the alpha-band power of adults exceeded one of the children in the left hemisphere, providing potential evidence for the fact-retrieval strategy. Since the completion of the Schulte table involves a whole set of elementary cognitive functions, the obtained results were essential for developing passive brain-computer interfaces for monitoring and adjusting a human state in the process of learning and solving cognitive tasks of various types.


Subject(s)
Brain , Electroencephalography , Adult , Attention , Child , Cognition , Humans , Memory, Short-Term
7.
Sci Rep ; 9(1): 9838, 2019 07 08.
Article in English | MEDLINE | ID: mdl-31285468

ABSTRACT

The understanding of neurophysiological mechanisms responsible for motor imagery (MI) is essential for the development of brain-computer interfaces (BCI) and bioprosthetics. Our magnetoencephalographic (MEG) experiments with voluntary participants confirm the existence of two types of motor imagery, kinesthetic imagery (KI) and visual imagery (VI), distinguished by activation and inhibition of different brain areas in motor-related α- and ß-frequency regions. Although the brain activity corresponding to MI is usually observed in specially trained subjects or athletes, we show that it is also possible to identify particular features of MI in untrained subjects. Similar to real movement, KI implies muscular sensation when performing an imaginary moving action that leads to event-related desynchronization (ERD) of motor-associated brain rhythms. By contrast, VI refers to visualization of the corresponding action that results in event-related synchronization (ERS) of α- and ß-wave activity. A notable difference between KI and VI groups occurs in the frontal brain area. In particular, the analysis of evoked responses shows that in all KI subjects the activity in the frontal cortex is suppressed during MI, while in the VI subjects the frontal cortex is always active. The accuracy in classification of left-arm and right-arm MI using artificial intelligence is similar for KI and VI. Since untrained subjects usually demonstrate the VI imagery mode, the possibility to increase the accuracy for VI is in demand for BCIs. The application of artificial neural networks allows us to classify MI in raising right and left arms with average accuracy of 70% for both KI and VI using appropriate filtration of input signals. The same average accuracy is achieved by optimizing MEG channels and reducing their number to only 13.


Subject(s)
Brain/physiology , Kinesthesis/physiology , Magnetoencephalography/methods , Adult , Artificial Intelligence , Brain-Computer Interfaces , Female , Humans , Imagery, Psychotherapy , Male , Neural Networks, Computer , Photic Stimulation , Young Adult
8.
Chaos ; 26(6): 065307, 2016 06.
Article in English | MEDLINE | ID: mdl-27369869

ABSTRACT

Explosive synchronization has recently been reported in a system of adaptively coupled Kuramoto oscillators, without any conditions on the frequency or degree of the nodes. Here, we find that, in fact, the explosive phase coexists with the standard phase of the Kuramoto oscillators. We determine this by extending the mean-field theory of adaptively coupled oscillators with full coupling to the case with partial coupling of a fraction f. This analysis shows that a metastable region exists for all finite values of f > 0, and therefore explosive synchronization is expected for any perturbation of adaptively coupling added to the standard Kuramoto model. We verify this theory with GPU-accelerated simulations on very large networks (N ∼ 10(6)) and find that, in fact, an explosive transition with hysteresis is observed for all finite couplings. By demonstrating that explosive transitions coexist with standard transitions in the limit of f → 0, we show that this behavior is far more likely to occur naturally than was previously believed.

SELECTION OF CITATIONS
SEARCH DETAIL
...