Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Anat ; 203(5): 513-21, 2003 Nov.
Article in English | MEDLINE | ID: mdl-14635804

ABSTRACT

The aim of the study was to estimate developmental changes in the rabbit basolateral complex (BLC) by stereological and histochemical methods. Material consisted of 45 brains of New Zealand rabbits (aged from 2 to 180 days, P2 to P180) of both sexes, divided into nine groups. The following parameters were estimated: volume of the cerebral hemisphere; volume of the whole BLC and of particular BLC nuclei; neuronal density and total number of neurons in these nuclei. Developmental changes in acetylcholinesterase (AChE) activity in the BLC were also examined. The volume of the cerebral hemisphere increased until P30, whereas volumes of nuclei increased for longer--until P90. The density of neurons in all nuclei studied reached the level characteristic for an adult animal at about P30. The total number of neurons in the dorsolateral division of the lateral nucleus (Ldl) stabilized the earliest--between P30 and P60, whereas in the ventromedial division of the lateral nucleus (Lvm), basomedial (BM) and basolateral (BL) nuclei the number stabilized later--between P60 and P90. AChE activity appears minimal in the BLC on P2, reaches a maximum on P30 and then decreases to the level characteristic of an adult animal on P60. AChE activity was greater in BL than in other nuclei in all age groups. Reaching adult AChE activity 1 month earlier than the total number of neurons in the BLC may indicate a role of the cholinergic system in BLC maturation.


Subject(s)
Amygdala/growth & development , Rabbits/growth & development , Acetylcholinesterase/analysis , Amygdala/embryology , Amygdala/enzymology , Animals , Female , Histocytochemistry/methods , Male , Rabbits/metabolism , Staining and Labeling , Time Factors
2.
Folia Morphol (Warsz) ; 60(4): 259-80, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11770336

ABSTRACT

The aim of the present paper is to describe the morphology and topography of the nuclei of the amygdaloid complex in the rabbit. In the current study we also investigated the intensity of the enzymatic reaction for acetylcholinesterase (AChE) in the amygdaloid complex and the morphology of its neurones. Material consisted of 5 brains of adult New Zealand rabbit, stained either with cresyl violet or for AChE activity. Although, as in other mammals, the rabbit amygdala consists of two main nuclear groups (corticomedial and basolateral), it reveals a peculiar morphology pattern, forming a transition structure between those observed in the cat and rat. Especially characteristic is the arrangement of the basolateral complex. Within that the ventromedial division of the lateral nucleus seems to be the largest, while its dorsolateral division--the smallest. The arrangement of the corticomedial complex in the rabbit is similar to both the cat and rat. In the rabbit the highest acetylcholinesterase activity is found in the basolateral nucleus and the nucleus of the lateral olfactory tract. The lowest AChE staining is observed in the cortical and medial nuclei, amygdalohippocampal and anterior amygdaloid areas and intercalated masses.


Subject(s)
Amygdala/anatomy & histology , Neurons/cytology , Rabbits/anatomy & histology , Acetylcholinesterase/metabolism , Amygdala/enzymology , Animals , Cell Size , Female , Histocytochemistry , Humans , Neurons/enzymology , Rabbits/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...