Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Nanoscale Res Lett ; 16(1): 153, 2021 Oct 11.
Article in English | MEDLINE | ID: mdl-34633574

ABSTRACT

We report results of comprehensive experimental exploration (X-ray photoemission, Raman and optical spectroscopy) of carbon nanofibers (CNFs) in combination with first-principles modeling. Core-level spectra demonstrate prevalence of sp2 hybridization of carbon atoms in CNF with a trace amount of carbon-oxygen bonds. The density functional theory (DFT)-based calculations demonstrated no visible difference between mono- and bilayers because σ-orbitals are related to in-plane covalent bonds. The influence of the distortions on π-peak is found to be significant only for bilayers as a result of π-π interlayer bonds formation. These results are supported by both experimental Raman and XPS valence band spectra. The combination of optical measurements with a theoretical modeling indicates the formation of optically active graphene quantum dots (GQDs) in the CNF matrix, with a radiative relaxation of the excited π* state. The calculated electronic structure of these GQDs is in quantitative agreement with the measured optical transitions and provides an explanation of the absence of visible contribution from these GQDs to the measured valence bands spectra.

2.
Phys Chem Chem Phys ; 21(22): 11992-11998, 2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31134978

ABSTRACT

Directly measuring elementary electronic excitations in dopant 3d metals is essential to understanding how they function as part of their host material. Through calculated crystal field splittings of the 3d electron band it is shown how transition metals Mn, Fe, Co, and Ni are incorporated into SnO2. The crystal field splittings are compared to resonant inelastic X-ray scattering (RIXS) experiments, which measure precisely these elementary dd excitations. The origin of spectral features can be determined and identified via this comparison, leading to an increased understanding of how such dopant metals situate themselves in, and modify the host's electronic and magnetic properties; and also how each element differs when incorporated into other semiconducting materials. We found that oxygen vacancy formation must not occur at nearest neighbour sites to metal atoms, but instead must reside at least two coordination spheres beyond. The coordination of the dopants within the host can then be explicitly related to the d-electron configurations and energies. This approach facilitates an understanding of the essential link between local crystal coordination and electronic/magnetic properties.

3.
Phys Chem Chem Phys ; 20(9): 6500-6514, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29445813

ABSTRACT

SnO2 and Mn-doped SnO2 single-phase tetragonal crystal structure quantum dots (QDs) of uniform size with control over dopant composition and microstructure were synthesized using the high pressure microwave synthesis technique. On a broader vision, we systematically investigated the influence of dilute Mn ions in SnO2 under the strong quantum confinement regime through various experimental techniques and density functional theoretical (DFT) calculations to disclose the physical mechanism governing the observed ferromagnetism. DFT calculations revealed that the formation of the stable (001) surface was much more energetically favorable than that of the (100) surface, and the formation energy of the oxygen vacancies in the stable (001) surface was comparatively higher in the undoped SnO2 QDs. X-ray photoelectron spectroscopy (XPS) and first-principles modeling of doped QDs revealed that the lower doping concentration of Mn favored the formation of MnO-like (Mn2+) structures in defect-rich areas and the higher doping concentration of Mn led to the formation of multiple configurations of Mn (Mn2+ and Mn3+) in the stable surfaces of SnO2 QDs. Electronic absorption spectra indicated the characteristic spin allowed ligand field transitions of Mn2+ and Mn3+ and the red shift in the band gap. DFT calculations clearly indicated that only the substitutional dopant antiferromagnetic configurations were more energetically favorable. The gradual increase of magnetization at a low level of Mn-doping could be explained by the prevalence of antiferromagnetic manganese-vacancy pairs. Higher concentrations of Mn led to the appearance of ferromagnetic interactions between manganese and oxygen vacancies. The increase in the concentration of metallic dopants caused not just an increase in the total magnetic moment of the system but also changed the magnetic interactions between the magnetic moments on the metal ions and oxygen. The present study provides new insight into the fundamental understanding of the origin of ferromagnetism in transition metal-doped QDs.

4.
Sci Rep ; 7(1): 5758, 2017 07 18.
Article in English | MEDLINE | ID: mdl-28720873

ABSTRACT

Topological insulators have become one of the most prominent research topics in materials science in recent years. Specifically, Bi2Te3 is one of the most promising for technological applications due to its conductive surface states and insulating bulk properties. Herein, we contrast the bulk and surface structural environments of dopant ions Cr, Mn, Fe, Co, Ni, and Cu in Bi2Te3 thin films in order to further elucidate this compound. Our measurements show the preferred oxidation state and surrounding crystal environment of each 3d-metal atomic species, and how they are incorporated into Bi2Te3. We show that in each case there is a unique interplay between structural environments, and that it is highly dependant on the dopant atom. Mn impurities in Bi2Te3 purely substitute into Bi sites in a 2+ oxidation state. Cr atoms seem only to reside on the surface and are effectively not able to be absorbed into the bulk. Whereas for Co and Ni, an array of substitutional, interstitial, and metallic configurations occur. Considering the relatively heavy Cu atoms, metallic clusters are highly favourable. The situation with Fe is even more complex, displaying a mix of oxidation states that differ greatly between the surface and bulk environments.

5.
Nanoscale ; 9(18): 6145-6150, 2017 May 11.
Article in English | MEDLINE | ID: mdl-28447704

ABSTRACT

Graphene has attracted much attention as an impermeable membrane and a protective coating against oxidation. While many theoretical studies have shown that defect-free graphene is impermeable, in reality graphene inevitably has defects in the form of grain boundaries and vacancies. Here, we study the effects of N-dopants on the impermeability of few-layered graphene (FLG) grown on copper using chemical vapor deposition. The grain boundaries in FLG have minimal impact on their permeability to oxygen as they do not provide a continuous channel for gas transport due to high tortuosity. However, we experimentally show that the N-dopants in FLG display multiple configurations that create structural imperfections to selectively allow gas molecules to permeate. We used a comprehensive array of tools including Raman spectroscopy, X-ray photoelectron spectroscopy, optically stimulated electron emission measurements, and density functional theory of N-doped graphene on copper to elucidate the effects of dopant configuration on the impermeability of graphene. Our results clearly show that oxygen can permeate through graphene with non-graphitic nitrogen dopants that create pores in graphene and oxidize the underlying Cu substrate while graphitic nitrogen dopants do not show any changes compared to the pristine form. Furthermore, we observed that the work function of graphene can be tuned effectively by changing the dopant configuration.

6.
Phys Rev Lett ; 115(16): 167401, 2015 Oct 16.
Article in English | MEDLINE | ID: mdl-26550901

ABSTRACT

Dilute magnetic semiconductors (DMSs) show great promise for applications in spin-based electronics, but in most cases continue to elude explanations of their magnetic behavior. Here, we combine quantitative x-ray spectroscopy and Anderson impurity model calculations to study ferromagnetic Fe-substituted In2O3 films, and we identify a subset of Fe atoms adjacent to oxygen vacancies in the crystal lattice which are responsible for the observed room temperature ferromagnetism. Using resonant inelastic x-ray scattering, we map out the near gap electronic structure and provide further support for this conclusion. Serving as a concrete verification of recent theoretical results and indirect experimental evidence, these results solidify the role of impurity-vacancy coupling in oxide-based DMSs.

7.
J Phys Condens Matter ; 27(1): 015504, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25478917

ABSTRACT

The electronic structure of insulating antiferromagnetic LiMnAs is investigated using soft x-ray spectroscopy and compared to the electronic structure of metallic LiFeAs. Our calculations support the experimentally observed insulating antiferromagnetic order in LiMnAs. The x-ray absorption and resonant inelastic x-ray scattering spectra in LiFeAs and LiMnAs are adequately explained by the electronic structure alone, although it is possible that LiMnAs has significant electronic correlations driven by Hund's J coupling. Finally, we show evidence of a possible spin trap in Li(Fe0.95Mn0.05)As.

8.
J Phys Condens Matter ; 26(11): 115501, 2014 Mar 19.
Article in English | MEDLINE | ID: mdl-24589676

ABSTRACT

A method of electronic structure calculations for strongly correlated disordered materials is developed employing the basic idea of the coherent potential approximation. The evolution of the electronic structure and spin magnetic moment value with the concentration x in strongly correlated Ni1-xZnxO solid solutions is investigated in the framework of this method. The values of the energy gap and magnetic moment obtained are in agreement with the available experimental data.


Subject(s)
Electrons , Magnetics , Nickel/chemistry , Zinc Oxide/chemistry , Quantum Theory , Solutions
9.
J Biomed Mater Res B Appl Biomater ; 100(7): 1812-6, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22807469

ABSTRACT

XPS measurements of coarse-grained and nanostructured nitinol (Ni(50.2)Ti(49.8)) before and after chemical treatment in hydrofluoric acid (40% HF, 1 min) are presented. The nanostructured state, providing the excellent mechanical properties of nitinol, is achieved by severe plastic deformation. The near-surface layers of nitinol were studied by XPS depth profiling. According to the obtained results, a chemical treatment in hydrofluoric acid reduces the thickness of the protective TiO(2) oxide layer and induces a nickel release from the nitinol surface and an arsenic contamination, and can therefore not be recommended as conditioning to increase the roughness of NiTi-implants. A detailed evaluation of the resulting toxicological risks is given.


Subject(s)
Alloys/chemistry , Arsenic/analysis , Hydrofluoric Acid/chemistry , Nanostructures/chemistry , Titanium/chemistry , Arsenic/chemistry
10.
J Phys Condens Matter ; 24(21): 215501, 2012 May 30.
Article in English | MEDLINE | ID: mdl-22534111

ABSTRACT

The electronic structure of BaFe(2)As(2) doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d(10) shell. These findings help shed light on why superconductivity can occur in BaFe(2)As(2) doped with Co and Ni but not Cu.


Subject(s)
Arsenic/chemistry , Barium Compounds/chemistry , Ferric Compounds/chemistry , Models, Chemical , Models, Molecular , Computer Simulation , Electric Conductivity , Electron Transport
11.
J Phys Condens Matter ; 24(18): 185402, 2012 May 09.
Article in English | MEDLINE | ID: mdl-22508933

ABSTRACT

Mn(+)-implanted, amorphous SiO(2) samples were synthesized using pulsed-ion implantation without thermal annealing. The crystal and electronic structures have been studied using x-ray diffraction and synchrotron-based soft x-ray absorption and emission spectroscopy at the Si and Mn L(2,3) edges. We find a combination of small MnO clusters and Si crystallites at shallow depths while tetrahedral Mn coordination is found deeper in the host target. Through a combination of techniques, we find that the implantation process simultaneously decreases the long-range order in the near-surface region and increases order deeper in the SiO(2) host. Our results suggest Mn substitution into Si sites at deep levels catalyzes the formation of α-quartz, providing insight into the complex interactions that determine the local structure around the impurities as well as the overall changes to the crystallinity of implanted SiO(2).

12.
J Nanosci Nanotechnol ; 12(11): 8567-72, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23421245

ABSTRACT

The results of XPS measurements of nanostructured Ti (ns-Ti) prepared with a help of severe plastic deformation (SPD) have been presented. We have measured XPS spectra of core levels (Ti 2p, O 1s, C 1s, F 1s) and valence bands before and after treatment of ns-Ti-implants in HF. The obtained data have been compared with XPS measurements of untreated and acid treated coarse-grained Ti (cg-Ti). According to these measurements the surface composition has not practically been changed by reduction of grains size of Ti-implants. It has been found that the surface of both types of implants is covered with thick TiO2 layer. The acid treatment reduces the surface contamination of ns-Ti and cg-Ti by hydrocarbons and induces better passivation and formation of more thick TiO2 layer. It has been shown that severe plastic deformation not only improves mechanical properties but also preserves corrosion stability of Ti-implants.


Subject(s)
Nanostructures/chemistry , Nanostructures/ultrastructure , Prostheses and Implants , Titanium/chemistry , Equipment Design , Equipment Failure Analysis , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
13.
J Phys Condens Matter ; 21(43): 435702, 2009 Oct 28.
Article in English | MEDLINE | ID: mdl-21832444

ABSTRACT

Two different structural models for non-stoichiometric FeSe(x) are examined and compared with soft x-ray spectroscopy findings for FeSe(x) (x = 0.85, 0.50). A structural model of tetragonal FeSe with excess interstitial Fe gives better agreement with experiment than a structural model of tetragonal FeSe with Se vacancies. This interstitial Fe increases the number of 3d states at the Fermi level. We find evidence that large non-stoichiometric ratios of Fe:Se, such as that of FeSe(0.50), yield clusters of pure Fe in the crystal structure.

14.
J Phys Condens Matter ; 21(34): 345701, 2009 Aug 26.
Article in English | MEDLINE | ID: mdl-21715787

ABSTRACT

Resonant x-ray emission spectroscopy (XES) measurements at Fe L(2,3) edges and electronic structure calculations for LiFeAs and NaFeAs are presented. Experiment and theory show that in the vicinity of the Fermi energy, the density of states is dominated by contributions from Fe 3d states. The comparison of Fe L(2,3) XES with spectra of related FeAs compounds reveals similar trends in energy and the ratio of intensities of the L(2) and L(3) peaks (I(L(2))/I(L(3)) ratio). The I(L(2))/I(L(3)) ratio for all FeAs-based superconductors is found to be closer to that of metallic Fe than that of the strongly correlated FeO. We conclude that iron-based superconductors are weakly or, at most, moderately correlated systems.

15.
J Phys Condens Matter ; 21(5): 056002, 2009 Feb 04.
Article in English | MEDLINE | ID: mdl-21817308

ABSTRACT

Co and Al co-doped ZnO diluted magnetic semiconductors are fabricated by a pulsed laser deposition and their electronic structure is investigated using x-ray absorption and emission spectroscopy. The Zn(0.895)Co(0.100)Al(0.005)O thin films grown under oxygen-rich conditions exhibit ferromagnetic behavior without any indication of Co clustering. The Co L-edge and O K-edge x-ray absorption and emission spectra suggest that most of the Co dopants occupy the substitutional sites and the oxygen vacancies are not responsible for free charge carriers. The spectroscopic results and first principles calculations reveal that the ferromagnetism in Co and Al co-doped ZnO semiconductors mainly arises from Al interstitial defects and their hybridization with Co substitutional dopants.

16.
J Phys Condens Matter ; 19(7): 076215, 2007 Feb 21.
Article in English | MEDLINE | ID: mdl-22251602

ABSTRACT

The electronic structure of as-grown and post-annealed Ga(1-x)Mn(x)As epilayers (x≈0.055) has been investigated using resonant inelastic x-ray scattering. Mn L2,3 x-ray emission spectra show that the integral intensity ratio of Mn L2 to L3 emission lines increases with annealing temperature and comes close to that of manganese oxide. The oxygen K-emission/absorption spectra of post-annealed Ga0.945Mn0.055As show 1.5-3.0 times higher degree of oxidation on the film surface than that of the as-grown sample. These experimental findings are attributed to the diffusion of Mn impurity atoms from interstitial positions in the GaAs host lattice to the surface where they are passivated by oxygen.

17.
J Phys Chem B ; 110(32): 15742-8, 2006 Aug 17.
Article in English | MEDLINE | ID: mdl-16898720

ABSTRACT

We present experimental and theoretical evidence that varying the local environment and physical structure of dried DNA has a direct impact on its electronic structure. By preparing samples of DNA in various solutions, it was possible to alter the type of ions present during the production of the DNA samples. These variations resulted in differences in the local chemical environment of the dried DNA molecules. X-ray absorption spectroscopy (XAS) and X-ray emission spectroscopy (XES) were used to probe the variations in the electronic structure of DNA samples. DFT calculations of a stack of 10 adenine (A)-thymine (T) nucleobase pairs show that slight structural variations in stacking height have a direct influence on the electronic structure and result in changes to the HOMO-LUMO gap. The effects of these differences in the local environment on the electronic structure are discussed and are related to the results of conductivity measurements of DNA.


Subject(s)
DNA/chemistry , Electrons , Models, Chemical , Nucleic Acid Conformation , Quantum Theory , Sensitivity and Specificity , Spectrum Analysis/methods , X-Rays
18.
J Phys Chem B ; 110(1): 196-204, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16471521

ABSTRACT

The effect of graphite addition on the mechanism of hydrogen uptake by titanium during mechanochemical activation in hydrogen flow was studied using kinetic, structural, microscopic, and spectroscopic techniques. As was found, already a small graphite admixture of about 0.5 wt % changed the kinetics of mechanically induced H2 sorption and significantly stimulated Ti-H2 interaction. Two new types of occupation sites available for hydrogen were observed, which are characterized by low H2 desorption temperatures: about 650 and 750 K instead of 1000 K.

19.
J Phys Condens Matter ; 18(17): 4243-51, 2006 May 03.
Article in English | MEDLINE | ID: mdl-21690778

ABSTRACT

The electronic structure of Co-doped anatase TiO(2) epitaxial thin films grown at different partial oxygen pressures is investigated using soft x-ray emission spectroscopy. The resonantly excited Co L(2,3) x-ray emission spectra of ferromagnetic Ti(0.96)Co(0.04)O(2) samples for the oxygen-deficient regime show that the ratio of integral intensities for Co L(2) and L(3) emission lines significantly decreases with respect to nonmagnetic samples in the oxygen-rich regime. This is due to L(2)L(3)M(4,5) Coster-Kronig transitions and suggests that ferromagnetic Ti(0.96)Co(0.04)O(2) samples have n-type charge carriers and Co-Co bonds between substitutional and interstitial Co atoms are present while Co-O bonds are dominant in nonmagnetic Ti(0.96)Co(0.04)O(2) samples in the oxygen-rich regime. Electronic structure calculations show that the presence of free charge carriers and Co segregation play a crucial role in strong ferromagnetism at room temperature in Co-doped TiO(2).

20.
J Phys Condens Matter ; 18(46): 10405-12, 2006 Nov 22.
Article in English | MEDLINE | ID: mdl-21690925

ABSTRACT

Mn 3d electronic states in the dilute magnetic semiconductor Zn(1-x)Mn(x)S (x = 0.1-0.3) are studied using soft x-ray emission (XES) measurements and density functional theory (DFT). Mn L(2,3) emission spectra of Zn(1-x)Mn(x)S (x = 0.1-0.3) suggest that the Mn impurities do not form clusters in the host ZnS lattice, in agreement with previous models. A shift in the position of a Mn L(3) XES feature suggests a change in the nature of the hybridization between the Mn 3d(3/2) and S 3p states as a function of x. Our DFT calculations reproduce the weak interatomic exchange interaction, as well as the strong intra-atomic exchange splitting that is expected from observations of Zeeman splitting in such materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...