Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Molecules ; 28(14)2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37513224

ABSTRACT

The growing demand for cheap, safe, recyclable, and environmentally friendly batteries highlights the importance of the development of organic electrode materials. Here, we present a novel redox-active polymer comprising a polyaniline-type conjugated backbone and quinizarin and anthraquinone units. The synthesized polymer was explored as a cathode material for batteries, and it delivered promising performance characteristics in both lithium and potassium cells. Excellent lithiation efficiency enabled high discharge capacity values of >400 mA g-1 in combination with good stability upon charge-discharge cycling. Similarly, the potassium cells with the polymer-based cathodes demonstrated a high discharge capacity of >200 mAh g-1 at 50 mA g-1 and impressive stability: no capacity deterioration was observed for over 3000 cycles at 11 A g-1, which was among the best results reported for K ion battery cathodes to date. The synthetic availability and low projected cost of the designed material paves a way to its practical implementation in scalable and inexpensive organic batteries, which are emerging as a sustainable energy storage technology.

2.
Adv Sci (Weinh) ; 10(26): e2302232, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37400366

ABSTRACT

Quasi-2D perovskites have recently flourished in the field of luminescence due to the quantum-confinement effect and the efficient energy transfer between different n phases resulting in exceptional optical properties. However, owing to the lower conductivity and poor charge injection, quasi-2D perovskite light-emitting diodes (PeLEDs) typically suffer from low brightness and high-efficiency roll-off at high current densities compared to 3D perovskite-based PeLEDs, which is undoubtedly one of the most critical issues in this field. In this work, quasi-2D PeLEDs with high brightness, reduced trap density, and low-efficiency roll-off are successfully demonstrated by introducing a thin layer of conductive phosphine oxide at the perovskite/electron transport layer interface. The results surprisingly show that this additional layer does not improve the energy transfer between multiple quasi-2D phases in the perovskite film, but purely improves the electronic properties of the perovskite interface. On the one hand, it passivates the surface defects of the perovskite film; on the other hand, it promotes electron injection and prevents hole leakage across this interface. As a result, the modified quasi-2D pure Cs-based device shows a maximum brightness of > 70,000 cd m-2 (twice that of the control device), a maximum external quantum efficiency (EQE) of > 10% and a much lower efficiency roll-off at high bias voltages.

3.
Nanomaterials (Basel) ; 14(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202456

ABSTRACT

The results of numerical SRIM and SCAPS calculations for the ionization, displacement and heating of hybrid perovskites under the influence of protons (E = 0.15, 3.0 and 18 MeV) are presented and show that the lowest transfer energy is demonstrated by the MAPbI3, FAPbBr3 and FAPbI3 compounds, which represent the greatest potential for use as solar cells in space devices. On the other hand, it is found that perovskite compositions containing FA and Cs and with mixed cations are the most stable from the point of view of the formation of vacancies and phonons and are also promising as radiation-resistant materials with respect to powerful proton fluxes. Taking into account the lateral distribution of proton tracks showed that, at an energy level of several MeV, the release of their energy can be considered uniform over the depth and area of the entire solar cell, suggesting that the simple protection by plastic films from the low-energy protons is sufficient.

4.
Materials (Basel) ; 17(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38203983

ABSTRACT

The high power-conversion efficiencies of hybrid perovskite solar cells encourage many researchers. However, their limited photostability represents a serious obstacle to the commercialization of this promising technology. Herein, we present an efficient method for improving the intrinsic photostability of a series of commonly used perovskite material formulations such as MAPbI3, FAPbI3, Cs0.12FA0.88PbI3, and Cs0.10MA0.15FA0.75PbI3 through modification with octenidine dihydroiodide (OctI2), which is a widely used antibacterial drug with two substituted pyridyl groups and two cationic centers in its molecular framework. The most impressive stabilizing effects were observed in the case of FAPbI3 and Cs0.12FA0.88PbI3 absorbers that were manifested in significant suppression or even blocking of the undesirable perovskite films' recrystallization and other decomposition pathways upon continuous 110 mW/cm2 light exposure. The achieved material photostability-within 9000 h for the Oct(FA)n-1PbnI3n+1 (n = 40-400) and 20,000 h for Oct(Cs0.12FA0.88)n-1PbnI3n+1 (where n = 40-400) formulations-matches the highest values ever reported for complex lead halides. It is important to note that the stabilizing effect is maintained when OctI2 is used only as a perovskite surface-modifying agent. Using a two-cation perovskite composition as an example, we showed that the performances of the solar cells based on the developed Oct(Cs0.12FA0.88)399Pb400I1201 absorber material are comparable to that of the reference devices based on the unmodified perovskite composition. These findings indicate a great potential of the proposed approach in the design of new highly photostable and efficient light absorbers. We believe that the results of this study will also help to establish important guidelines for the rational material design to improve the operational stability of perovskite solar cells.

5.
Nanomaterials (Basel) ; 12(23)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36500972

ABSTRACT

This study is devoted to investigating the stability of metal-organic framework (MOF)-hybrid perovskites consisting of CH3NH3PbI3 (MAPbI3) and UiO-66 without a functional group and UiO-66 with different COOH, NH2,and F functional groups under external influences including heat, light, and humidity. By conducting crystallinity, optical, and X-ray photoelectron spectra (XPS) measurements after long-term aging, all of the prepared MAPbI3@UiO-66 nanocomposites (with pristine UiO-66 or UiO-66 with additional functional groups) were stable to light soaking and a relative humidity (RH) of 50%. Moreover, the UiO-66 and UiO-66-(F)4 hybrid perovskite films possessed a higher heat tolerance than the other two UiO-66 with the additional functional groups of NH2 and COOH. Tthe MAPbI3@UiO-66-(F)4 delivered the highest stability and improved optical properties after aging. This study provides a deeper understanding of the impact of the structure of hybrid MOFs on the stability of the composite films.

6.
J Phys Chem Lett ; 13(12): 2744-2749, 2022 Mar 31.
Article in English | MEDLINE | ID: mdl-35315674

ABSTRACT

Herein, we report the nanoscale visualization of the photochemical degradation dynamics of MAPbI3 (MA = CH3NH3+) using infrared scattering scanning near-field microscopy (IR s-SNOM) combined with a series of complementary analytical techniques such as UV-vis and FTIR-spectroscopy, XRD, and XPS. Light exposure of the MAPbI3 films resulted in a gradual loss of MA+ cations starting from the grain boundaries at the film surface and slowly progressing toward the center of the grains and deeper into the bulk perovskite phase. The binary lead iodide PbI2 was found to be the major perovskite photochemical degradation product under the experimental conditions used. Interestingly, the formation of the PbI2 skin over the perovskite grains resulted in a largely enhanced photoluminescence, which resembles the effects observed for core-shell quantum dots. The obtained results demonstrate that IR s-SNOM represents a powerful technique for studying the spatially resolved degradation dynamics of perovskite absorbers and revealing the associated material aging pathways.

7.
J Phys Chem Lett ; 12(18): 4362-4367, 2021 May 13.
Article in English | MEDLINE | ID: mdl-33938752

ABSTRACT

Regardless of the impressive photovoltaic performances demonstrated for lead halide perovskite solar cells, their practical implementation is severely impeded by the low device stability. Complex lead halides are sensitive to both light and heat, which are unavoidable under realistic solar cell operational conditions. Suppressing these intrinsic degradation pathways requires a thorough understanding of their mechanistic aspects. Herein, we explored the temperature effects in the light-induced decomposition of MAPbI3 and PbI2 thin films under anoxic conditions. The analysis of the aging kinetics revealed that MAPbI3 photolysis and PbI2 photolysis have quite high effective activation energies of ∼85 and ∼106 kJ mol-1, respectively, so decreasing the temperature from 55 to 30 °C can extend the perovskite lifetime by factors of >10-100. These findings suggest that controlling the temperature of the perovskite solar panels might allow the long operational lifetimes (>20 years) required for the practical implementation of this promising technology.

8.
J Phys Chem Lett ; 11(16): 6772-6778, 2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32689804

ABSTRACT

Hybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI3 can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent. By applying a few complementary methods, we reveal that the PVC additive leads to passivation of defects in the absorber material. Introducing an optimal content of PVC into MAPbI3 delivers a PCE of 18.7% in combination with a significantly improved solar cell operational lifetime: devices retained ∼70% of the initial efficiency after light soaking for 1500 h, whereas the control samples without PVC degraded almost completely under the same conditions.

9.
ACS Appl Mater Interfaces ; 12(16): 19161-19173, 2020 Apr 22.
Article in English | MEDLINE | ID: mdl-32233360

ABSTRACT

We investigated the impact of a series of hole transport layer (HTL) materials such as Poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), NiOx, poly[bis(4-phenyl)(2,4,6-trimethylphenyl)amine (PTAA), and polytriarylamine (PTA) on photostability of thin films and solar cells based on MAPbI3, Cs0.15FA0.85PbI3, Cs0.1MA0.15FA0.75PbI3, Cs0.1MA0.15FA0.75Pb(Br0.15I0.85)3, and Cs0.15FA0.85Pb(Br0.15I0.85)3 complex lead halides. Mixed halide perovskites showed reduced photostability in comparison with similar iodide-only compositions. In particular, we observed light-induced recrystallization of all perovskite films except MAPbI3 with the strongest effects revealed for Br-containing systems. Moreover, halide and ß FAPbI3 phase segregations were also observed mostly in mixed-halide systems. Interestingly, coating perovskite films with the PCBM layer spectacularly suppressed light-induced growth of crystalline domains as well as segregation of Br-rich and I-rich phases or ß FAPbI3. We strongly believe that all three effects are promoted by the light-induced formation of surface defects, which are healed by adjacent PCBM coating. While comparing different hole-transport materials, we found that NiOx and PEDOT:PSS are the least suitable HTLs because of their interfacial (photo)chemical interactions with perovskite absorbers. On the contrary, polyarylamine-type HTLs PTA and PTAA form rather stable interfaces, which makes them the best candidates for durable p-i-n perovskite solar cells. Indeed, multilayered ITO/PTA(A)/MAPbI3/PCBM stacks revealed no aging effects within 1000 h of continuous light soaking and delivered stable and high power conversion efficiencies in solar cells. The obtained results suggest that using polyarylamine-type HTLs and simple single-phase perovskite compositions pave a way for designing stable and efficient perovskite solar cells.

10.
J Phys Chem Lett ; 11(7): 2630-2636, 2020 Apr 02.
Article in English | MEDLINE | ID: mdl-32178515

ABSTRACT

In this work, we report a comparative study of the gamma ray stability of perovskite solar cells based on a series of perovskite absorbers including MAPbI3 (MA = methylammonium), MAPbBr3, Cs0.15FA0.85PbI3 (FA = formamidinim), Cs0.1MA0.15FA0.75PbI3, CsPbI3, and CsPbBr3. We reveal that the composition of the perovskite material strongly affects the radiation stability of the solar cells. In particular, solar cells based on the MAPbI3 were found to be the most resistant to gamma rays since this perovskite undergoes rapid self-healing due to the special gas-phase chemistry analyzed with ab initio calculations. The fact that the solar cells based on MAPbI3 can withstand a 1000 kRad gamma ray dose without any noticeable degradation of the photovoltaic properties is particularly exciting and shifts the paradigm of research in this field toward designing more dynamic rather than intrinsically robust (e.g., inorganic) materials.

11.
Chem Commun (Camb) ; 56(10): 1541-1544, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-31922170

ABSTRACT

We report the application of a Ni-based coordination polymer derived from 1,2,4,5-tetraaminobenzene (P1) as a fast and stable potassium battery anode. In a voltage range of 0.5-2.0 V vs. K+/K, a reversible capacity of 220 mA h g-1 was obtained at 0.1 A g-1. Even with a relatively high electrode loading of 5.0 mg cm-2 and only 10 wt% carbon additive, 118 mA h g-1 was still retained at 1 A g-1. For thinner electrodes with 30 wt% carbon, a capacity of up to 104 mA h g-1 was observed at 10 A g-1 (charging in ∼40 seconds). An areal capacity of up to 2.73 mA h cm-2 was demonstrated. The capacity fade at 1 A g-1 was only 4.4% after 200 cycles. Structure transformations of P1 during charge/discharge were studied using X-ray photoelectron spectroscopy and in situ X-ray diffraction.

12.
J Phys Chem A ; 124(1): 135-140, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31820980

ABSTRACT

Thermal effects in organo-metal halide perovskites are studied by ab initio molecular dynamics (MD) simulations performed at effective temperatures of 293 and 383 K and by X-ray photoelectron spectroscopy (XPS). We find that the cause of thermal instability in this class of perovskites is the rotation of the methylammonium (MA) groups that destroy the rigid lattice of pure compounds (MAPbI3 and MAPbBr3). When the Pb-I lattice is initially distorted by partial replacement of the I with Cl or Br, this not only prevents formation of PbI2 seeds but also improves lattice flexibility and stability against the temperature-induced motion and rotation of MA groups.

13.
J Phys Condens Matter ; 32(9): 095501, 2020 Feb 27.
Article in English | MEDLINE | ID: mdl-31722319

ABSTRACT

In this study, we investigate the photo-/thermal degradation mechanism of hybrid perovskites by using x-ray photoelectron (XPS) valence band (VB) spectra coupling with density functional theory (DFT) calculations. Herein, CH3NH3PbI3 is respectively subjected to irradiation with visible light and annealing at an exposure of 0-1000 h. It is found from XPS survey spectra that, in both cases (irradiation and annealing), a decrease in the I:Pb ratio is observed with aging time, which unambiguously indicates the formation of PbI2 as the product of photo/thermal degradation. The comparison of the XPS VB spectra of irradiated and annealed perovskites with the DFT calculations of CH3NH3PbI3 and PbI2 compounds have showed a systematic decrease in the contribution of I-5p states, which allows us to determine the respective threshold for degradation, which is 500 h for light irradiation and 200 h for annealing. This discrepancy might be due to the fact that the relaxation of thermal excitations of the system is carried out only by the phonons (which are non-radiative physical processes) while the radiative processes occurred during the photoexcitation will elastically or inelastically divert part of the external energy from the system to reduce its impact on perovskite degradation.

14.
J Phys Chem Lett ; 11(1): 333-339, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31838849

ABSTRACT

We report the first systematic assessment of intrinsic photothermal stability of a large panel of complex lead halides APbX3 incorporating different univalent cations (A = CH3NH3+, [NH2CHNH2]+, Cs+) and halogen anions (X = Br, I) using a series of analytical techniques such as UV-vis and X-ray photoelectron spectroscopy, X-ray diffraction, EDX analysis, atomic force and scanning electron microscopy, ESR spectroscopy, and mass spectrometry. We show that heat stress and light soaking induce a severe degradation of perovskite films even in the absence of oxygen and moisture. The stability of complex lead halides increases in the order MAPbBr3 < MAPbI3 < FAPbI3 < FAPbBr3 < CsPbI3 < CsPbBr3, thus featuring all-inorganic perovskites as the most promising absorbers for stable perovskite solar cells. An important correlation was found between the stability of the complex lead halides and the volatility of univalent cation halides incorporated in their structure. The established relationship provides useful guidelines for designing new complex metal halides with immensely improved stability.

15.
J Phys Chem Lett ; 10(18): 5440-5445, 2019 Sep 19.
Article in English | MEDLINE | ID: mdl-31495174

ABSTRACT

Polymeric aromatic amines were shown to be very promising cathodes for lithium-ion batteries. Surprisingly, these materials are scarcely used for designing post-lithium batteries. In this Letter, we investigate the application of the high-voltage poly(N-phenyl-5,10-dihydrophenazine) (p-DPPZ) cathodes for K-ion batteries. The designed batteries demonstrate an impressive specific capacity of 162 mAh g-1 at the current density of 200 mA g-1, operate efficiently at high current densities of 2-10 A g-1, enabling charge and discharge within ∼1-4 min, and deliver the specific capacity of 125-145 mAh g-1 with a retention of 96 and 79% after 100 and 1000 charge-discharge cycles, respectively. Finally, these K-ion batteries with polymeric p-DPPZ cathodes showed rather outstanding specific power of >3 × 104 W kg-1, thus paving a way to the design of ultrafast and durable high-capacity metal-ion batteries matching the increasing demand for high power and high energy density electrochemical energy storage devices.

16.
J Phys Condens Matter ; 31(41): 415301, 2019 Oct 16.
Article in English | MEDLINE | ID: mdl-31292291

ABSTRACT

X-ray and optical spectroscopies were applied in order to study the band structure and electronic excitations of the SiO x /R y O z (R = Si, Al, Zr) suboxide superlattices. The complementary x-ray emission and absorption measurements allow for the band gap values for the SiO x layers to be established, which are found to have almost no dependency on the cation type R. It is determined that, after annealing, the stoichiometric factor x remains near 1.8 in all the systems under study, implying that the silicon quantum dot synthesis reaction is not fully completed. It is shown that the SiO x /Al2O3 multilayer contains octahedral structural motifs (SiO6) usually found in stishovite, whereas SiO x /SiO2 and SiO x /ZrO2 demonstrate an electronic structure similar to conventional silica. The intrinsic electronic excited states are examined by means of synchrotron-excited photoluminescence spectroscopy. Low-energy UV-excited luminescence of SiO x layers is found to have the same spectrum in all of the studied structures, while VUV-excited spectra strongly depend on the cation R. In these measurements, manifestations of 'slow' exciton-mediated and 'fast' defect-related luminescence are distinguished using nanosecond time resolution. It is shown that both mobile and bounded excitons appear in the suboxide layer under 6.2 eV and 5.8 eV irradiation and then relax radiatively through the triplet-singlet transition of the neighbouring oxygen-deficient centers. The complete picture of the optical excitation and relaxation processes in these materials is illustrated in a general diagram depicting electronic states.

17.
Langmuir ; 33(39): 10118-10124, 2017 10 03.
Article in English | MEDLINE | ID: mdl-28873309

ABSTRACT

We demonstrate a facile approach to designing transparent electron-collecting electrodes by depositing thin layers of medium and low work function metals on top of transparent conductive metal oxides (TCOs) such as ITO and FTO. The modified electrodes were fairly stable for months under ambient conditions and maintained their electrical characteristics. XPS spectroscopy data strongly suggested integration of the deposited metal in the TCO structure resulting in additional doping of the conducting oxide at the interface. Kelvin probe microscopy measurements revealed a significant decrease in the ITO work function after modification. Organic solar cells based on three different conjugated polymers have demonstrated state of the art performances in inverted device geometry using Mg- or Yb-modified ITO as electron collecting electrode. The simplicity of the proposed approach and the excellent ambient stability of the modified ITO electrodes allows one to expect their wide utilization in research laboratories and electronic industry.

18.
J Phys Condens Matter ; 29(40): 405804, 2017 Oct 11.
Article in English | MEDLINE | ID: mdl-28857048

ABSTRACT

We present measurements of resistivity, x-ray absorption (XAS) and emission (XES) spectroscopy together with ab initio band structure calculations for quasi two dimensional ruthenate Na2RuO3. Density function calculations (DFT) and XAS and XES spectra both show that Na2RuO3 is a semiconductor with an activation energy of ∼80 meV. Our DFT calculations reveal large magneto-elastic coupling in Na2RuO3 and predict that the ground state of Na2RuO3 should be antiferromagnetic zig-zag.

19.
J Phys Chem Lett ; 8(6): 1211-1218, 2017 Mar 16.
Article in English | MEDLINE | ID: mdl-28220700

ABSTRACT

We report a careful and systematic study of thermal and photochemical degradation of a series of complex haloplumbates APbX3 (X = I, Br) with hybrid organic (A+ = CH3NH3) and inorganic (A+ = Cs+) cations under anoxic conditions (i.e., without exposure to oxygen and moisture by testing in an inert glovebox environment). We show that the most common hybrid materials (e.g., MAPbI3) are intrinsically unstable with respect to the heat- and light-induced stress and, therefore, can hardly sustain the real solar cell operation conditions. On the contrary, the cesium-based all-inorganic complex lead halides revealed far superior stability and, therefore, provide an impetus for creation of highly efficient and stable perovskite solar cells that can potentially achieve pragmatic operational benchmarks.

20.
J Chem Phys ; 143(22): 224704, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26671393

ABSTRACT

The electronic structure of [6,6]-phenyl C61 butyric acid methyl ester (PCBM), poly(3-hexylthiophene) (P3HT), and P3HT/PCBM blends is studied using soft X-ray emission and absorption spectroscopy and density functional theory calculations. We find that annealing reduces the HOMO-LUMO gap of P3HT and P3HT/PCBM blends, whereas annealing has little effect on the HOMO-LUMO gap of PCBM. We propose a model connecting torsional disorder in a P3HT polymer to the HOMO-LUMO gap, which suggests that annealing helps to decrease the torsional disorder in the P3HT polymers. Our model is used to predict the characteristic length scales of the flat P3TH polymer segments in P3HT and P3HT/PCBM blends before and after annealing. Our approach may prove useful in characterizing organic photovoltaic devices in situ or even in operando.


Subject(s)
Fullerenes/chemistry , Polymers/chemistry , Quantum Theory , Thiophenes/chemistry , Electrons
SELECTION OF CITATIONS
SEARCH DETAIL
...