Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Article in English | MEDLINE | ID: mdl-36770521

ABSTRACT

In addition to environmental concerns, the presence of microorganisms in plastic food packaging can be hazardous to human health. In this work, cinnamon nanoparticles incorporated with red seaweed (Kappaphycus alvarezii) biopolymer films were fabricated using a solvent casting method. Cinnamon was used as a filler to enhance the properties of the films at different concentrations (1, 3, 5, and 7% w/w) by incorporating it into the matrix network. The physico-chemical, thermal, mechanical, and antimicrobial properties of the cinnamon biopolymer films were obtained using dynamic light scattering (DLS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transmission infrared spectroscopy (FT-IR), water contact angle (WCA) measurement, thermogravimetric analysis (TGA), mechanical testing, and antimicrobial testing, respectively. The results showed that the addition of cinnamon nanoparticles to the film improved the morphological, mechanical, thermal, wettability, and antibacterial properties of the nanocomposite films. The cinnamon particles were successfully reduced to nano-sized particles with an average diameter between 1 nm and 100 nm. The hydrophobicity of the film increased as the concentration of cinnamon nanoparticles incorporated into the seaweed matrix increased. The tensile and thermal properties of the cinnamon seaweed biopolymer film were significantly improved with the presence of cinnamon nanoparticles. The biopolymer films exhibited good inhibitory activity at 7% cinnamon nanoparticles against Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), and Salmonella bacteria with inhibition zone diameters of 11.39, 10.27, and 12.46 mm, indicating the effective antimicrobial activity of the biopolymer film. The functional properties of the fabricated biopolymer film were enhanced with the addition of cinnamon nanoparticles.

2.
Sci Rep ; 13(1): 676, 2023 01 12.
Article in English | MEDLINE | ID: mdl-36635301

ABSTRACT

Micronutrient deficiencies such as iron (Fe), zinc (Zn), and vitamin A, constitute a severe global public health phenomenon. Over half of preschool children and two-thirds of nonpregnant women of reproductive age worldwide have micronutrient deficiencies. Biofortification is a cost-effective strategy that comprises a meaningful and sustainable means of addressing this issue by delivering micronutrients through staple foods to populations with limited access to diverse diets and other nutritional interventions. Here, we report on the proof-of-concept and early development stage of a collection of biofortified rice events with a high density of Fe and Zn in polished grains that have been pursued further to advance development for product release. In total, eight constructs were developed specifically expressing dicot ferritins and the rice nicotianamine synthase 2 (OsNAS2) gene under different combinations of promoters. A large-scale transformation of these constructs to Bangladesh and Philippines commercial indica cultivars and subsequent molecular screening and confined field evaluations resulted in the identification of a pool of ten events with Fe and Zn concentrations in polished grains of up to 11 µg g-1 and up to 37 µg g-1, respectively. The latter has the potential to reduce the prevalence of inadequate Zn intake for women of childbearing age in Bangladesh and in the Philippines by 30% and 50%, respectively, compared to the current prevalence. To our knowledge, this is the first potential biotechnology public-sector product that adopts the product cycle phase-gated approach, routinely applied in the private sector.


Subject(s)
Oryza , Ferritins/genetics , Iron/metabolism , Micronutrients , Organic Chemicals , Oryza/chemistry , Zinc/metabolism , Plants, Genetically Modified
3.
Polymers (Basel) ; 15(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679245

ABSTRACT

Plastic pollution has raised interest in biodegradable and sustainable plastic alternatives. For edible food packaging, seaweed biopolymers have been studied for their film-forming properties. In this study, packaging films were developed using the solvent casting technique from natural red seaweed (Kappaphycus alvarezii) and coffee waste product. The physico-chemical and thermal properties of seaweed/coffee biopolymer films was obtained using dynamic light scattering (DLS), scanning electron microscopy (SEM), Fourier transmission irradiation (FT-IR), water contact angle measurement (WCA) and thermogravimetric analysis (TGA). The characterization study was carried out to improve the film's morphological, thermal, and mechanical properties. The average particle size of coffee waste was found to be between 1.106 and 1.281 µm, with a zeta potential value of -27.0 mV indicating the compound's strong negative charge. The SEM analysis revealed that the coffee filler was evenly dispersed in the polymer matrix, improving the film's structural properties. The FT-IR result shows that coffee waste was successfully incorporated over the film matrix with the presence of a N-H bond. The hydrophobic property of the film was enhanced with the incorporation of coffee filler, indicating increased water contact angle compared to the neat film. The tensile properties of the biopolymer film were significantly improved at 4 wt% coffee powder with optimum tensile strength (35.47 MPa) with the addition of coffee waste powder. The incorporation of coffee waste into the seaweed matrix increased the functional properties of the fabricated biopolymer film. Thus, seaweed/coffee biopolymer film has the potential to be used in food packaging and other applications.

4.
Polymers (Basel) ; 14(23)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36501521

ABSTRACT

The development of bioplastic materials that are biobased and/or degradable is commonly presented as an alleviating alternative, offering sustainable and eco-friendly properties over conventional petroleum-derived plastics. However, the hydrophobicity, water barrier, and antimicrobial properties of bioplastics have hindered their utilization in packaging applications. In this study, lignin nanoparticles (LNPs) with a purification process were used in different loadings as enhancements in a Kappaphycus alvarezii matrix to reduce the hydrophilic nature and improve antibacterial properties of the matrix and compared with unpurified LNPs. The influence of the incorporation of LNPs on functional properties of bioplastic films, such as morphology, surface roughness, structure, hydrophobicity, water barrier, antimicrobial, and biodegradability, was studied and found to be remarkably enhanced. Bioplastic film containing 5% purified LNPs showed the optimum enhancement in almost all of the ultimate performances. The enhancement is related to strong interfacial interaction between the LNPs and matrix, resulting in high compatibility of films. Bioplastic films could have additional advantages and provide breakthroughs in packaging materials for a wide range of applications.

5.
F1000Res ; 11: 403, 2022.
Article in English | MEDLINE | ID: mdl-37745627

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide disruption of global health putting healthcare workers at high risk. To reduce the transmission of SARS-CoV-2, in particular during treating the patients, our team aims to develop an optimized isolation chamber. The present study was conducted to evaluate the role of temperature elevation against SARS-CoV-2 viability, where the information would be used to build the isolation chamber. 0.6 mL of the Indonesian isolate of SARS-CoV-2 strain 20201012747 (approximately 10 13 PFU/mL) was incubated for one hour with a variation of temperatures: 25, 30, 35, 40, 45, 50, 55, 60, and 65°C in digital block heater as well as at room temperature (21-23°C) before used to infect Vero E6 cells. The viability was determined using a plaque assay. Our data found a significant reduction of the viral viability from 10 13 PFU/mL to 10 9 PFU/mL after the room temperature was increase to 40°C. Further elevation revealed that 55°C and above resulted in the total elimination of the viral viability. Increasing the temperature 40°C to reduce the SARS-CoV-2 survival could create mild hyperthermia conditions in a patient which could act as a thermotherapy. In addition, according to our findings, thermal sterilization of the vacant isolation chamber could be conducted by increasing the temperature to 55°C. In conclusion, elevating the temperature of the isolation chamber could be one of the main variables for developing an optimized isolation chamber for COVID-19 patients.


Subject(s)
COVID-19 , Hyperthermia, Induced , Humans , SARS-CoV-2 , Temperature
6.
F1000Res ; 11: 300, 2022.
Article in English | MEDLINE | ID: mdl-37260419

ABSTRACT

Background: The decrease of immunity acquired from COVID-19 vaccines is a potential cause of breakthrough infection. Understanding the dynamics of immune responses of vaccine-induced antibodies post-vaccination is important. This study aimed to measure the level of anti-SARS-CoV-2 receptor-binding domain (RBD) total antibody in individuals at different time points upon the receipt of the second dose of CoronaVac vaccine, as well as evaluate the plausible associated factors. Methods: A cross-sectional study was conducted among CoronaVac-vaccinated residents in Banda Aceh, Indonesia. The level of anti-SARS-CoV-2 RBD total antibody was measured using Elecsys immunoassay. A set of standardized and validated questionnaires were used to assess the demographics and other associated factors. Results: Our results showed waning anti-SARS-CoV-2 RBD total antibody titres over time post-vaccination. Compared to samples of the first month post-vaccination, the antibody titres were significantly lower than those of five-months (mean 184.6 vs. 101.8 U/mL, p = 0.009) and six-months post-vaccination (mean 184.6 vs. 95.59 U/mL, p = 0.001). This suggests that the length of time post-vaccination was negatively correlated with titre of antibody. A protective level of antibody titres (threshold of 15 U/mL) was observed from all the samples vaccinated within one to three months; however, only 73.7% and 78.9% of the sera from five- and six-months possessed the protective titres, respectively. The titre of antibody was found significantly higher in sera of individuals having a regular healthy meal intake compared to those who did not (mean 136.7 vs. 110.4 U/mL, p = 0.044), including in subgroup analysis that included those five to six months post-vaccination only (mean 79.0 vs. 134.5 U/mL, p = 0.009). Conclusions: This study provides insights on the efficacy of CoronaVac vaccine in protecting individuals against SARS-CoV-2 infection over time, which may contribute to future vaccination policy management to improve and prolong protective strategy.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , Indonesia , Cross-Sectional Studies , COVID-19/prevention & control , SARS-CoV-2 , Antibodies, Viral
7.
Nat Commun ; 11(1): 5203, 2020 10 15.
Article in English | MEDLINE | ID: mdl-33060603

ABSTRACT

Ending all forms of hunger by 2030, as set forward in the UN-Sustainable Development Goal 2 (UN-SDG2), is a daunting but essential task, given the limited timeline ahead and the negative global health and socio-economic impact of hunger. Malnutrition or hidden hunger due to micronutrient deficiencies affects about one third of the world population and severely jeopardizes economic development. Staple crop biofortification through gene stacking, using a rational combination of conventional breeding and metabolic engineering strategies, should enable a leap forward within the coming decade. A number of specific actions and policy interventions are proposed to reach this goal.


Subject(s)
Biofortification/methods , Metabolic Engineering/methods , Breeding , Crops, Agricultural/genetics , Developing Countries , Food Supply , Food, Fortified , Global Health , Humans , Malnutrition/prevention & control , Micronutrients , Minerals , Oryza , Plants/genetics , Plants, Genetically Modified , Policy Making , Provitamins , Sustainable Development/economics , Sustainable Development/trends , United Nations , Vitamins
8.
J Genet Eng Biotechnol ; 17(1): 9, 2019 Nov 12.
Article in English | MEDLINE | ID: mdl-31712914

ABSTRACT

BACKGROUND: Rice can absorb less than 40% of applied nitrogen fertilizer, whereas the unabsorbed nitrogen fertilizer may cause environmental problems, such as algal blooms in freshwater and increased production of nitrous oxide, a greenhouse gas which is 300 times more potent than carbon dioxide. Development of nitrogen use efficient (NUE) rice is essential for more environmentally friendly rice production. Recently, NUE rice has been developed by root-specific expression of alanine aminotransferase (AlaAT) gene from barley, a monocot plant. Therefore, we tested the efficacy of AlaAT gene from cucumber in transgenic rice, aiming to provide evidence for the conservation of AlaAT gene function in monocot and dicot. RESULTS: AlaAT gene from cucumber (CsAlaAT2) has been successfully cloned and constructed on pCAMBIA1300 plant expression vectors under the control of tissue-specific promoter OsAnt1. Agrobacterium tumefaciens-mediated transformation of Indonesian rice cv. Fatmawati using this construct produced 14 transgenic events. Pre-screening of T1 seedlings grown in the agar medium containing low nitrogen concentration identified selected events that were superior in the root dry weight. Southern hybridization confirmed the integration of T-DNA in the selected event genomes, each of them carried 1, 2, or 3 T-DNA insertions. Efficacy assay of three lead events in the greenhouse showed that in general transgenic events had increased biomass, tiller number, nitrogen content, and grain yield compared to WT. One event, i.e., FAM13, showed an increase in yield as much as 27.9% and higher plant biomass as much as 27.4% compared to WT under the low nitrogen condition. The lead events also showed higher absorption NUE, agronomical NUE, and grain NUE as compared to WT under the low nitrogen condition. CONCLUSIONS: The results of this study showed that root-specific expression of cucumber alanine aminotransferase2 gene improved nitrogen use efficiency in transgenic rice, which indicate the conservation of function of this gene in monocot and dicot.

9.
Methods Mol Biol ; 1385: 201-22, 2016.
Article in English | MEDLINE | ID: mdl-26614292

ABSTRACT

One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.


Subject(s)
Plants, Genetically Modified , Transgenes/genetics , Blotting, Southern , Blotting, Western , Gene Expression , Oryza/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction
10.
Proc Natl Acad Sci U S A ; 110(51): 20431-6, 2013 Dec 17.
Article in English | MEDLINE | ID: mdl-24297875

ABSTRACT

Increasing crop production is essential for securing the future food supply in developing countries in Asia and Africa as economies and populations grow. However, although the Green Revolution led to increased grain production in the 1960s, no major advances have been made in increasing yield potential in rice since then. In this study, we identified a gene, SPIKELET NUMBER (SPIKE), from a tropical japonica rice landrace that enhances the grain productivity of indica cultivars through pleiotropic effects on plant architecture. Map-based cloning revealed that SPIKE was identical to NARROW LEAF1 (NAL1), which has been reported to control vein pattern in leaf. Phenotypic analyses of a near-isogenic line of a popular indica cultivar, IR64, and overexpressor lines revealed increases in spikelet number, leaf size, root system, and the number of vascular bundles, indicating the enhancement of source size and translocation capacity as well as sink size. The near-isogenic line achieved 13-36% yield increase without any negative effect on grain appearance. Expression analysis revealed that the gene was expressed in all cell types: panicles, leaves, roots, and culms supporting the pleiotropic effects on plant architecture. Furthermore, SPIKE increased grain yield by 18% in the recently released indica cultivar IRRI146, and increased spikelet number in the genetic background of other popular indica cultivars. The use of SPIKE in rice breeding could contribute to food security in indica-growing regions such as South and Southeast Asia.


Subject(s)
Alleles , Gene Expression Regulation, Plant/physiology , Oryza/metabolism , Plant Leaves/metabolism , Plant Proteins/biosynthesis , Plant Roots/metabolism , Organ Specificity/physiology , Oryza/genetics , Plant Leaves/genetics , Plant Proteins/genetics , Plant Roots/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...