Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(7): 103777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38713986

ABSTRACT

This study aimed to determine the influence of black soldier fly larvae oil calcium salt (BSFLO-SCa) supplementation on performance, jejunal histomorphology and gene expression of tight junctions and inflammatory cytokines in laying hens. A total of 60 ISA Brown laying hens (40 wk of age) were divided into 3 treatment groups, including a control group fed a basal diet (T0) and basal diets supplemented with 1% (T1) and 2% (T2) of BSFLO-SCa. Each treatment group consisted of 5 replicates with 4 laying hens each. Results showed that 1% and 2% BSFLO-SCa supplementation significantly reduced (P < 0.05) feed conversion ratio (FCR), while egg weight (EW) increased (P < 0.05). The inclusion with 2% increased (P < 0.05) both egg production (HDA) and mass (EM). The addition of 1% and 2% BSFLO-SCa significantly increased (P < 0.05) villus height (VH) and villus width (VW), while crypt depth (CD) significantly increased (P < 0.05) with 2% BSFLO-SCa. The tight junction and gene expression of claudin-1 (CLDN-1), junctional adhesion molecules-2 (JAM-2), and occludin (OCLN) were significantly upregulated (P < 0.05) with 2% BSFLO-SCa. The pro-inflammatory cytokines and gene expression of interleukin-6 (IL-6) was significantly downregulated (P < 0.05) with the addition of BSFLO-SCa, while gene expression of interleukin-18 (IL-18), toll-like receptor 4 (TLR-4), and tumor necrosis factor-α (TNF-α) were downregulated with 2% BSFLO-SCa. On the other hand, the anti-inflammatory cytokines and gene expression of interleukin-13 (IL-13) and interleukin-10 (IL-10) were significantly upregulated (P < 0.05) at 2% BSFLO-SCa. In conclusion, dietary supplementation with 2% BSFLO-SCa improved productivity, intestinal morphology and integrity by upregulating tight junction-related protein of gene expression of laying hens. In addition, supplementation with BSFLO-SCa enhanced intestinal immune responses by upregulating anti-inflammatory and downregulating pro-inflammatory cytokine gene expression.


Subject(s)
Animal Feed , Chickens , Diet , Dietary Supplements , Animals , Chickens/physiology , Chickens/anatomy & histology , Female , Animal Feed/analysis , Diet/veterinary , Dietary Supplements/analysis , Larva/anatomy & histology , Larva/physiology , Random Allocation , Cytokines/genetics , Cytokines/metabolism , Intestines/drug effects , Intestines/anatomy & histology , Intestines/physiology , Dose-Response Relationship, Drug , Simuliidae/physiology , Diptera/physiology , Diptera/drug effects
2.
Sci Rep ; 14(1): 3554, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347010

ABSTRACT

The study evaluated the effect of adding of nutmeg (Myristica fragrans Houtt.) essential oil (NEO) as a feed additive on methane production, rumen fermentation parameters, rumen enzyme activity, and nutrient digestibility in vitro. This study was divided into three treatments based on the level of NEO addition, which included 0 µL/L (T0), 100 µL/L (T1), and 200 µL/L (T2). The feed substrate composition consisted of king grass as forage and concentrate in a 60:40 ratio. Feed fermentation was conducted using the Menke and Steingass gas production and two-step Tilley and Terry in-vitro digestibility technique. The data obtained from the study were analyzed using one-way ANOVA and if there were differences between means, they were further assessed using DMRT. The results showed that T2 treatment significantly decreased (P < 0.05) ammonia (NH3) levels, total VFA, acetate, propionate, butyrate, and microbial protein (P < 0.05). Methane production and the activity of rumen protease enzyme significantly decreased (P < 0.05) at T1 and T2 treatment. The T2 treatment significantly reduced (P < 0.05) protein digestibility (IVCPD) at 48 h, while IVCPD at 96 h significantly increased (P < 0.05). On the other hand, the addition of nutmeg essential oil did not effect the activity of the amylase, carboxymethyl cellulase, and ß-glucosidase enzymes, as well as the in-vitro digestibility of dry matter (IVDMD), crude fiber (IVCFD), and organic matter (IVOMD). The conclusion drawn from this study is that the optimum level for NEO is 200 µL/L, which can reduce methane production and increase crude protein digestibility at 96 h without any negative effect on rumen fermentation and nutrient digestibility.


Subject(s)
Myristica , Oils, Volatile , Animals , Diet , Myristica/metabolism , Oils, Volatile/pharmacology , Oils, Volatile/metabolism , Digestion , Rumen/metabolism , Fermentation , Nutrients , Methane/metabolism , Animal Feed/analysis
3.
Transl Anim Sci ; 7(1): txad098, 2023.
Article in English | MEDLINE | ID: mdl-37954128

ABSTRACT

This study was conducted to evaluate growth performance, carcass yield, intestinal morphology, organ development, nutrient digestibility, and blood biochemical parameters of broiler fed 1% reduced-protein diets with/without protease supplementation. A total of 1,120 one-day-old male broiler chickens with average initial body weight (BW), 46.45 ±â€…0.49 g, were divided into five groups with seven replications and 32 birds per replication. The treatment varied according to the protein and protease enzyme levels: positive control (PC), negative control (NC, PC with reduction of 1% protein), PC supplemented with 50 g/t protease (PC + 50), NC supplemented with 50 g/t protease (NC + 50), and NC supplemented with 100 g/t protease (NC + 100). The results showed that there was no significant effect of 1% reduced-protein diets, with or without protease on feed intake, final BW, average daily gain, feed conversion ratio, and nutrient digestibility. The changes in dietary protein level and supplementation of protease did not affect carcass yield, but significantly affected abdominal fat content, PC + 50 group had significantly lower abdominal fat content than NC-based diet including NC, NC + 50, NC + 100. Reduced-protein with protease supplementation strongly affected organ weight, especially on day 21: the pancreas was heavier in PC and NC + 50 group than other groups, spleen was heaver in NC group than in NC + 100 group, thymus was heavier in NC + 50 group than in PC, NC and NC + 100 group, small intestine was heavier in NC + 50 and NC + 100 group than in PC group, and large intestine was also heavier in NC + 50 group than in NC group. Villus height sampled at 35-d was significantly increased with protease supplement, and which was significantly higher in NC + 100 group than NC group. Regarding on blood metabolites, only urea and uric acid were affected by the reduction of dietary protein, broiler fed PC diet had higher urea and uric acid content than fed NC diet. In conclusion, supplementation of 50 g/t protease in 1% reduced-protein diets does not negatively affect on growth, nutrient digestibility, carcass yield, organ development, and blood metabolites. Moreover, supplementation of protease in low-protein diet could effectively promote organ development and benefit intestine morphology.

4.
Poult Sci ; 102(10): 102984, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37586189

ABSTRACT

This study evaluated the effect supplementation of black soldier fly larvae oil calcium salt (BSFLO-SCa) on performance, blood biochemical profile, carcass characteristic, meat quality, and gene expression in fat metabolism broiler chickens. A total of 280 male New Lohmann strain MB 202 broiler chicks (1-day-old) were randomly placed into 4 treatments, including a control group (T0) were fed basal diet and a basal diet supplemented with 1% (T1), 2% (T2), and 3% (T3) BSFLO-SCa. Each treatment consisted of 7 pens with 10 chickens each. Results showed that 1% BSFLO-SCa supplementation significantly reduced (P < 0.05) abdominal and meat fat, while gene expression on fat synthesis (FAS, ACC) was downregulated. Meat fatty acid profiles such as medium-chain fatty acid being dominant in lauric and myristic and monosaturated fatty acid significantly increased (P < 0.05). On the other hand, polyunsaturated fatty acid significantly decreased (P < 0.05). In addition, the other parameters did not affect by supplementation of 1% BSFLO-SCa. The addition starting from 2% significantly reduced (P < 0.05) performance and carcass characteristics. Blood biochemical profiles (HDL, protein, albumin) and meat qualities (protein, cholesterol, water-holding capacity, cooking losses, a* (redness), and b* (yellowness) values) were significantly increased (P < 0.05), while gene expression on fat oxidation (CPT-1) was upregulated. In conclusion, broiler chicken that received of 1% BSFL-SCa does not negatively affect growth performance and carcass characteristics but reduced fattening in broiler meat.


Subject(s)
Chickens , Diptera , Animals , Male , Larva , Calcium/metabolism , Animal Feed/analysis , Dietary Supplements , Diet/veterinary , Meat/analysis , Fatty Acids/metabolism , Gene Expression
5.
Pak J Biol Sci ; 21(1): 29-37, 2018.
Article in English | MEDLINE | ID: mdl-30187717

ABSTRACT

BACKGROUND AND OBJECTIVE: The biogas sludge is generally not used optimally and people even pour it directly into the river that it cause environmental pollution. One of the ways to get the benefit from sludge and chicken blood meal or fishmeal is to use it as a substitute for bran in mushroom media. This study aimed to improve the nutrient content of biogas sludge with the addition of chicken blood meal (CBM) and fishmeal (FM) as substitute material for bran in white oyster mushroom media. MATERIALS AND METHODS: The biogas sludge was dried in the sun for 3 days until its form resembled the soil. The treatment consisted of dried biogas sludge without CBM (BP0), dried biogas sludge with 1% CBM (BP1) and dried biogas sludge with 3% CBM (BP2). Each was added to the media of white oyster mushroom as much as 15% as substitute material for bran. The other treatment consisted of dried biogas sludge without FM (FP0), dried biogas sludge with 2% FM (FP1) and dried biogas sludge with 4% FM (FP2). Each was added to the media of white oyster mushroom as much as 5% as substitute material for bran. BP0 and FP0 created from white oyster mushroom media were commonly used by farmers. Each treatment was analyzed of nutritional and biological contents. All the data were tested using completely randomized design one-way ANOVA. RESULTS: The results of the research on the use of chicken blood meal and fishmeal showed that the best treatments were BP2 and FP2. Their nutrient content increased, including the organic-C, organic matter, nitrogen, P2O5 and K2O. The productivity of the oyster mushroom increased, shown by the increase of fresh weight and diameter of caps in treatment BP2. The replacement of bran by biogas sludge with 4% FM addition (FP2) in oyster mushroom media increased the fresh weight, the number of caps and the length of oyster mushroom stalks. CONCLUSION: The best treatments for mushroom media were BP2 and FP2 to be used as substitute material for bran in white oyster mushroom media.


Subject(s)
Biofuels/adverse effects , Chickens/blood , Pleurotus/growth & development , Sewage/chemistry , Animals , Environmental Pollution/adverse effects , Nitrogen/chemistry , Nutrients/metabolism , Soil/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...