Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Biochim Biophys Acta Proteins Proteom ; 1872(1): 140965, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37739110

ABSTRACT

The pathogenesis of the various prion diseases is based on the conformational conversion of the prion protein from its physiological cellular form to the insoluble scrapie isoform. Several chaperones, including the Hsp60 family of group I chaperonins, are known to contribute to this transformation, but data on their effects are scarce and conflicting. In this work, two GroEL-like phage chaperonins, the single-ring OBP and the double-ring EL, were found to stimulate monomeric prion protein fibrillation in an ATP-dependent manner. The resulting fibrils were characterised by thioflavin T fluorescence, electron microscopy, proteinase K digestion assay and other methods. In the presence of ATP, chaperonins were found to promote the conversion of prion protein monomers into short amyloid fibrils with their further aggregation into less toxic large clusters. Fibrils generated with the assistance of phage chaperonins differ in morphology and properties from those formed spontaneously from monomeric prion in the presence of denaturants at acidic pH.


Subject(s)
Bacteriophages , Prions , Animals , Prion Proteins/chemistry , Bacteriophages/metabolism , Prions/chemistry , Chaperonin 60/chemistry , Adenosine Triphosphate
2.
Biochem Biophys Res Commun ; 695: 149439, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38160531

ABSTRACT

Celiac disease and other types of gluten intolerance significantly affect the life quality of patients making them restrict the diet removing all food produced from wheat, rye, oat, and barley flour, and some other products. These disorders arise from protease resistance of poorly soluble proteins prolamins, contained in gluten. Enhanced proteolytic digestion of gliadins might be considered as a prospective approach for the treatment of celiac disease and other types of gluten intolerance. Herein, we tested a range of sulfated polymers (kappa-carrageenan, dextran sulfate and different polysaccharides from brown seaweeds, and a synthetic polystyrene sulfonate) for the ability to activate gliadin digestion by human digestive proteases, pepsin and trypsin. Sulfated polysaccharide from Fucus evanescens enhanced proteolytic digestion of gliadins from wheat flour and reduced its cytotoxicity on intestinal epithelial Caco-2 cell culture. Regarding the non-toxic nature of fucoidans, the results provide a basis for polymer-based drugs or additives for the symptomatic treatment of gluten intolerance.


Subject(s)
Celiac Disease , Gliadin , Humans , Gliadin/toxicity , Gliadin/metabolism , Caco-2 Cells , Flour , Sulfates , Triticum , Glutens/metabolism , Peptide Hydrolases , Polysaccharides/pharmacology , Digestion
3.
Biomedicines ; 10(10)2022 Sep 21.
Article in English | MEDLINE | ID: mdl-36289609

ABSTRACT

Chaperonins, a family of molecular chaperones, assist protein folding in all domains of life. They are classified into two groups: bacterial variants and those present in endosymbiotic organelles of eukaryotes belong to group I, while group II includes chaperonins from the cytosol of archaea and eukaryotes. Recently, chaperonins of a prospective new group were discovered in giant bacteriophages; however, structures have been determined for only two of them. Here, using cryo-EM, we resolved a structure of a new chaperonin encoded by gene 228 of phage AR9 B. subtilis. This structure has similarities and differences with members of both groups, as well as with other known phage chaperonins, which further proves their diversity.

4.
Biochem Biophys Res Commun ; 622: 136-142, 2022 09 24.
Article in English | MEDLINE | ID: mdl-35849955

ABSTRACT

Controversial information about the role of chaperonins in the amyloid transformation of proteins and, in particular, α-synuclein, requires a more detailed study of the observed effects due to the structure and functional state of various chaperonins. In this work, two types of phage chaperonins, the double-ring EL and the single-ring OBP, were shown to stimulate α-synuclein fibrillation in an ATP-dependent manner. Chaperonin morphology does not affect the stimulation of α-synuclein amyloid transformation. However, the ATP-dependent effect of single- and double-ring chaperonins on this process differs, which can lead to different morphology of resulting fibrils. Fibril formation seems to proceed without substrate encapsulation in the internal cavity of chaperonin, because of the structural features of phage chaperonins and their ability to function without co-chaperonins. In the absence of ATP, both chaperonins, on the contrary, completely prevent α-synuclein amyloid transformation, which provides the possibility of their use as anti-amyloid agents, in the form of incomplete molecules or mutants with suppressed ATPase activity.


Subject(s)
Bacteriophages , alpha-Synuclein , Adenosine Triphosphate/metabolism , Amyloid/metabolism , Amyloidogenic Proteins , Chaperonins , alpha-Synuclein/metabolism
5.
Biochemistry (Mosc) ; 87(1): 1-9, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35491019

ABSTRACT

Chaperonins provide proper folding of proteins in vivo and in vitro and, as was thought until recently, are characteristic of prokaryotes, eukaryotes, and archaea. However, it turned out that some bacteria viruses (bacteriophages) encode their own chaperonins. This review presents results of the investigations of the first representatives of this new chaperonin group: the double-ring EL chaperonin and the single-ring OBP and AR9 chaperonins. Biochemical properties and structure of the phage chaperonins were compared within the group and with other known group I and group II chaperonins.


Subject(s)
Bacteriophages , Chaperonins , Archaea/metabolism , Chaperonins/chemistry , Chaperonins/metabolism
6.
Int J Mol Sci ; 23(5)2022 Mar 02.
Article in English | MEDLINE | ID: mdl-35269889

ABSTRACT

The review highlights various aspects of the influence of chaperones on amyloid proteins associated with the development of neurodegenerative diseases and includes studies conducted in our laboratory. Different sections of the article are devoted to the role of chaperones in the pathological transformation of alpha-synuclein and the prion protein. Information about the interaction of the chaperonins GroE and TRiC as well as polymer-based artificial chaperones with amyloidogenic proteins is summarized. Particular attention is paid to the effect of blocking chaperones by misfolded and amyloidogenic proteins. It was noted that the accumulation of functionally inactive chaperones blocked by misfolded proteins might cause the formation of amyloid aggregates and prevent the disassembly of fibrillar structures. Moreover, the blocking of chaperones by various forms of amyloid proteins might lead to pathological changes in the vital activity of cells due to the impaired folding of newly synthesized proteins and their subsequent processing. The final section of the article discusses both the little data on the role of gut microbiota in the propagation of synucleinopathies and prion diseases and the possible involvement of the bacterial chaperone GroE in these processes.


Subject(s)
Amyloidosis , Neurodegenerative Diseases , Prions , Amyloid/chemistry , Amyloidogenic Proteins , Humans , Molecular Chaperones/metabolism , Neurodegenerative Diseases/metabolism , Prions/metabolism , alpha-Synuclein/metabolism
7.
Polymers (Basel) ; 13(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34685360

ABSTRACT

A prospective technology for reversible enzyme complexation accompanied with its inactivation and protection followed by reactivation after a fast thermocontrolled release has been demonstrated. A thermoresponsive polymer with upper critical solution temperature, poly(N-acryloyl glycinamide) (PNAGA), which is soluble in water at elevated temperatures but phase separates at low temperatures, has been shown to bind lysozyme, chosen as a model enzyme, at a low temperature (10 °C and lower) but not at room temperature (around 25 °C). The cooling of the mixture of PNAGA and lysozyme solutions from room temperature resulted in the capturing of the protein and the formation of stable complexes; heating it back up was accompanied by dissolving the complexes and the release of the bound lysozyme. Captured by the polymer, lysozyme was inactive, but a temperature-mediated release from the complexes was accompanied by its reactivation. Complexation also partially protected lysozyme from proteolytic degradation by proteinase K, which is useful for biotechnological applications. The obtained results are relevant for important medicinal tasks associated with drug delivery such as the delivery and controlled release of enzyme-based drugs.

8.
Viruses ; 12(7)2020 07 03.
Article in English | MEDLINE | ID: mdl-32635178

ABSTRACT

Bacteriophage PaBG is a jumbo Myoviridae phage isolated from water of Lake Baikal. This phage has limited diffusion ability and thermal stability and infects a narrow range of Pseudomonas aeruginosa strains. Therefore, it is hardly suitable for phage therapy applications. However, the analysis of the genome of PaBG presents a number of insights into the evolutionary history of this phage and jumbo phages in general. We suggest that PaBG represents an ancient group distantly related to all known classified families of phages.


Subject(s)
Pseudomonas Phages/isolation & purification , Pseudomonas aeruginosa/virology , Genome, Viral , Host Specificity , Phylogeny , Pseudomonas Phages/classification , Pseudomonas Phages/genetics , Pseudomonas Phages/physiology , Pseudomonas aeruginosa/physiology
9.
Int J Biol Macromol ; 157: 544-552, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32344079

ABSTRACT

A bioinformatics analysis of the currently predicted GroEL-like proteins encoded by bacteriophage genomes was carried out in comparison with the phage double-ring EL and single-ring OBP chaperonins, previously described by us, as well as with the known chaperonins of group I and group II. A novel GroEL-like protein predicted in the genome of phage AR9 Bacillus subtilis was expressed in E. coli cells, purified and characterised by various physicochemical methods. As shown by native electrophoresis, analytical ultracentrifugation and single-particle electron microscopy analysis, the putative AR9 chaperonin is a single-ring heptamer. Like the EL and OBP chaperonins, the new AR9 chaperonin possesses chaperone activity and does not require co-chaperonin to function. It was shown to prevent aggregation and provide refolding of the denatured substrate protein, endolysin, in an ATP-dependent manner. A comparison of its structural and biochemical properties with those of the EL and OBP chaperonins suggests outstanding diversity in this group of phage chaperonins.


Subject(s)
Bacteriophages/metabolism , Chaperonins/chemistry , Chaperonins/metabolism , Viral Proteins/chemistry , Viral Proteins/metabolism , Amino Acid Sequence , Binding Sites , Chaperonins/isolation & purification , Cloning, Molecular , Enzyme Activation , Gene Expression , Models, Molecular , Protein Aggregates , Protein Binding , Protein Conformation , Protein Stability , Structure-Activity Relationship , Ultracentrifugation , Viral Proteins/isolation & purification
10.
Polymers (Basel) ; 12(3)2020 Feb 28.
Article in English | MEDLINE | ID: mdl-32121059

ABSTRACT

The effect of a range of synthetic charged polymers on alpha-synuclein aggregation and amyloid formation was tested. Sulfated aromatic polymers, poly(styrene sulfonate) and poly(anethole sulfonate), have been found to suppress the fibril formation. In this case, small soluble complexes, which do not bind with thioflavin T, have been formed in contrast to the large stick-type fibrils of free alpha-synuclein. Sulfated polysaccharide (dextran sulfate), as well as sulfated vinylic polymer (poly(vinyl sulfate)) and polycarboxylate (poly(methacrylic acid)), enhanced amyloid aggregation. Conversely, pyridinium polycation, poly(N-ethylvinylpyridinium), switched the mechanism of alpha-synuclein aggregation from amyloidogenic to amorphous, which resulted in the formation of large amorphous aggregates that do not bind with thioflavin T. The obtained results are relevant as a model of charged macromolecules influence on amyloidosis development in humans. In addition, these results may be helpful in searching for new approaches for synucleinopathies treatment with the use of natural polymers.

11.
J Struct Biol ; 209(2): 107439, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31870903

ABSTRACT

Chaperonins are ubiquitously present protein complexes, which assist the proper folding of newly synthesized proteins and prevent aggregation of denatured proteins in an ATP-dependent manner. They are classified into group I (bacterial, mitochondrial, chloroplast chaperonins) and group II (archaeal and eukaryotic cytosolic variants). However, both of these groups do not include recently discovered viral chaperonins. Here, we solved the symmetry-free cryo-EM structures of a single-ring chaperonin encoded by the gene 246 of bacteriophage OBP Pseudomonas fluorescens, in the nucleotide-free, ATPγS-, and ADP-bound states, with resolutions of 4.3 Å, 5.0 Å, and 6 Å, respectively. The structure of OBP chaperonin reveals a unique subunit arrangement, with three pairs of subunits and one unpaired subunit. Each pair combines subunits in two possible conformations, differing in nucleotide-binding affinity. The binding of nucleotides results in the increase of subunits' conformational variability. Due to its unique structural and functional features, OBP chaperonin can represent a new group.


Subject(s)
Chaperonin 60/chemistry , Chaperonins/ultrastructure , Cryoelectron Microscopy , Chaperonin 60/ultrastructure , Chaperonins/chemistry , Protein Conformation , Protein Folding , Protein Subunits/chemistry
12.
Virology ; 515: 46-51, 2018 02.
Article in English | MEDLINE | ID: mdl-29268081

ABSTRACT

Myoviridae bacteriophages have a special contractile tail machine that facilitates high viral infection efficiency. The major component of this machine is a tail sheath that contracts during infection, allowing delivery of viral DNA into the host cell. Tail sheaths of Myoviridae phages are composed of multiple copies of individual proteins. The giant Pseudomonas aeruginosa phage PaBG is notable in its possession of two tail sheath proteins. These tail sheath proteins are encoded by orf 76 and 204, which were cloned and expressed individually and together in Escherichia coli. We demonstrate that only co-expression of both genes results in efficient assembly of thermostable and proteolytically resistant polysheaths composed of gp76 and gp204 with approximately 1:1 stoichiometry. Both gp76 and gp204 have been identified as structural components of the virion particle. We conclude that during PaBG morphogenesis in vivo two proteins, gp76 and gp204, assemble the tail sheath.


Subject(s)
Myoviridae/metabolism , Pseudomonas Phages/metabolism , Amino Acid Sequence , Myoviridae/genetics , Myoviridae/ultrastructure , Pseudomonas Phages/genetics , Pseudomonas Phages/ultrastructure , Pseudomonas aeruginosa/virology , Sequence Alignment , Viral Tail Proteins/chemistry , Viral Tail Proteins/genetics , Viral Tail Proteins/metabolism
13.
Biochem Biophys Res Commun ; 489(2): 200-205, 2017 07 22.
Article in English | MEDLINE | ID: mdl-28551403

ABSTRACT

Polyelectrolytes are a prospective tool for protection of proteins against aggregation. We compared synthetic polyanion, poly(styrene sulfonate), and natural chaperones of different types, namely, GroEL-like chaperonin from Pseudomonas aeruginosa phage EL and human small heat shock protein HspB5 (αB-crystallin), in their ability to prevent aggregation of client proteins. At 45 °C, all three agents efficiently suppressed thermal aggregation of phage endolysin. At higher temperatures, HspB5 and poly(styrene sulfonate) also inhibited endolysin aggregation, though polyanion became less efficient than HspB5 at 55 °C and 60 °C. However, the polyanion completely protected another protein, glyceraldehyde-3-phosphate dehydrogenase, even at 60 °C, in contrast to both natural chaperones whose effect disappeared at 50-55 °C. These results provide a platform for the development of artificial chaperones based on synthetic polyelectrolytes.


Subject(s)
Hot Temperature , Molecular Chaperones/metabolism , Polystyrenes/metabolism , Pseudomonas aeruginosa/chemistry , alpha-Crystallin B Chain/metabolism , Endopeptidases/metabolism , Humans , Molecular Chaperones/chemistry , Polystyrenes/chemistry , Pseudomonas aeruginosa/metabolism , alpha-Crystallin B Chain/chemistry
14.
Biochem J ; 473(15): 2383-93, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27247423

ABSTRACT

Recently, we discovered and studied the first virus-encoded chaperonin of bacteriophage EL Pseudomonas aeruginosa, gene product (gp) 146. In the present study, we performed bioinformatics analysis of currently predicted GroEL-like proteins encoded by phage genomes in comparison with cellular and mitochondrial chaperonins. Putative phage chaperonins share a low similarity and do not form a monophyletic group; nevertheless, they are closer to bacterial chaperonins in the phylogenetic tree. Experimental investigation of putative GroEL-like chaperonin proteins has been continued by physicochemical and functional characterization of gp246 encoded by the genome of Pseudomonas fluorescens bacteriophage OBP. Unlike the more usual double-ring architecture of chaperonins, including the EL gp146, the recombinant gp246 produced by Escherichia coli cells has been purified as a single heptameric ring. It possesses ATPase activity and does not require a co-chaperonin for its function. In vitro experiments demonstrated that gp246 is able to suppress the thermal protein inactivation and aggregation in an ATP-dependent manner, thus indicating chaperonin function. Single-particle electron microscopy analysis revealed the different conformational states of OBP chaperonin, depending on the bound nucleotide.


Subject(s)
Chaperonin 60/metabolism , Pseudomonas Phages/metabolism , Pseudomonas fluorescens/virology , Calorimetry , Chaperonin 60/chemistry , Chaperonin 60/genetics , Circular Dichroism , Cloning, Molecular , Microscopy, Electron , Protein Conformation
15.
Structure ; 24(4): 537-546, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-26996960

ABSTRACT

Chaperonins are ubiquitous, ATP-dependent protein-folding molecular machines that are essential for all forms of life. Bacteriophage φEL encodes its own chaperonin to presumably fold exceedingly large viral proteins via profoundly different nucleotide-binding conformations. Our structural investigations indicate that ATP likely binds to both rings simultaneously and that a misfolded substrate acts as the trigger for ATP hydrolysis. More importantly, the φEL complex dissociates into two single rings resulting from an evolutionarily altered residue in the highly conserved ATP-binding pocket. Conformational changes also more than double the volume of the single-ring internal chamber such that larger viral proteins are accommodated. This is illustrated by the fact that φEL is capable of folding ß-galactosidase, a 116-kDa protein. Collectively, the architecture and protein-folding mechanism of the φEL chaperonin are significantly different from those observed in group I and II chaperonins.


Subject(s)
Adenosine Triphosphate/metabolism , Bacteriophages/metabolism , Chaperonins/chemistry , Chaperonins/metabolism , Adenosine Triphosphate/chemistry , Bacteriophages/chemistry , Bacteriophages/genetics , Binding Sites , Chaperonins/genetics , Hydrolysis , Models, Molecular , Protein Conformation , Protein Folding , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism , beta-Galactosidase/chemistry
16.
Genome Announc ; 2(1)2014 Jan 09.
Article in English | MEDLINE | ID: mdl-24407628

ABSTRACT

The novel giant Pseudomonas aeruginosa bacteriophage PaBG was isolated from a water sample of the ultrafreshwater Lake Baikal. We report the complete genome sequence of this Myoviridae bacteriophage, comprising 258,139 bp of double-stranded DNA containing 308 predicted open reading frames.

17.
J Virol ; 86(18): 10103-11, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22787217

ABSTRACT

Chaperonins promote protein folding in vivo and are ubiquitously found in bacteria, archaea, and eukaryotes. The first viral chaperonin GroEL ortholog, gene product 146 (gp146), whose gene was earlier identified in the genome of bacteriophage EL, has been shown to be synthesized during phage propagation in Pseudomonas aeruginosa cells. The recombinant gp146 has been expressed in Escherichia coli and characterized by different physicochemical methods for the first time. Using serum against the recombinant protein, gp146's native substrate, the phage endolysin gp188, has been immunoprecipitated from the lysate of EL-infected bacteria and identified by mass spectrometry. In vitro experiments have shown that gp146 has a protective effect against endolysin thermal inactivation and aggregation, providing evidence of its chaperonin function. The phage chaperonin has been found to have the architecture and some properties similar to those of GroEL but not to require cochaperonin for its functional activity.


Subject(s)
Chaperonins/genetics , Chaperonins/metabolism , Pseudomonas Phages/genetics , Pseudomonas Phages/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Base Sequence , Chaperonins/chemistry , DNA, Viral/genetics , Microscopy, Electron, Transmission , Multiprotein Complexes , Protein Denaturation , Protein Multimerization , Pseudomonas aeruginosa/virology , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thermodynamics , Viral Proteins/chemistry
18.
Structure ; 19(12): 1885-94, 2011 Dec 07.
Article in English | MEDLINE | ID: mdl-22153511

ABSTRACT

Bacteriophage phiKZ is a giant phage that infects Pseudomonas aeruginosa, a human pathogen. The phiKZ virion consists of a 1450 Å diameter icosahedral head and a 2000 Å-long contractile tail. The structure of the whole virus was previously reported, showing that its tail organization in the extended state is similar to the well-studied Myovirus bacteriophage T4 tail. The crystal structure of a tail sheath protein fragment of phiKZ was determined to 2.4 Å resolution. Furthermore, crystal structures of two prophage tail sheath proteins were determined to 1.9 and 3.3 Å resolution. Despite low sequence identity between these proteins, all of these structures have a similar fold. The crystal structure of the phiKZ tail sheath protein has been fitted into cryo-electron-microscopy reconstructions of the extended tail sheath and of a polysheath. The structural rearrangement of the phiKZ tail sheath contraction was found to be similar to that of phage T4.


Subject(s)
Myoviridae/chemistry , Viral Tail Proteins/chemistry , Bacteriophage T4/chemistry , Bacteriophage T4/metabolism , Crystallography, X-Ray , Microscopy, Electron , Myoviridae/metabolism , Protein Conformation , Protein Folding
19.
Virology ; 395(2): 312-7, 2009 Dec 20.
Article in English | MEDLINE | ID: mdl-19822340

ABSTRACT

The tail sheath protein of giant bacteriophage phiKZ Pseudomonas aeruginosa encoded by gene 29 was identified and its expression system was developed. Localization of the protein on the virion was confirmed by immunoelectron microscopy. Properties of gene product (gp) 29 were studied by electron microscopy, immunoblotting and limited trypsinolysis. Recombinant gp29 assembles into the regular tubular structures (polysheaths) of variable length. Trypsin digestion of gp29 within polysheaths or extended sheath of virion results in specific cleavage of the peptide bond between Arg135 and Asp136. However, this cleavage does not affect polymeric structure of polysheaths, sheaths and viral infectivity. Digestion by trypsin of the C-truncated gp29 mutant, lacking the ability to self-assemble, results in formation of a stable protease-resistant fragment. Although there is no sequence homology of phiKZ proteins to proteins of other bacteriophages, some characteristic biochemical properties of gp29 revealed similarities to the tail sheath protein of bacteriophage T4.


Subject(s)
Pseudomonas Phages/metabolism , Pseudomonas aeruginosa/virology , Viral Tail Proteins/metabolism , Amino Acid Sequence , Antibodies, Viral , Cloning, Molecular , Gene Expression Regulation, Viral/physiology , Molecular Sequence Data , Viral Tail Proteins/chemistry , Viral Tail Proteins/genetics
20.
EMBO J ; 28(7): 821-9, 2009 Apr 08.
Article in English | MEDLINE | ID: mdl-19229296

ABSTRACT

The contractile tail of bacteriophage T4 is a molecular machine that facilitates very high viral infection efficiency. Its major component is a tail sheath, which contracts during infection to less than half of its initial length. The sheath consists of 138 copies of the tail sheath protein, gene product (gp) 18, which surrounds the central non-contractile tail tube. The contraction of the sheath drives the tail tube through the outer membrane, creating a channel for the viral genome delivery. A crystal structure of about three quarters of gp18 has been determined and was fitted into cryo-electron microscopy reconstructions of the tail sheath before and after contraction. It was shown that during contraction, gp18 subunits slide over each other with no apparent change in their structure.


Subject(s)
Bacteriophage T4/metabolism , Viral Tail Proteins/chemistry , Cloning, Molecular , Cryoelectron Microscopy , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Models, Molecular , Protein Structure, Tertiary , Viral Tail Proteins/genetics , Viral Tail Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...