Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Carbohydr Res ; 486: 107826, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31589993

ABSTRACT

An efficient and environmentally friendly system for producing 5-hydroxymethylfurfural (5-HMF) from fructose has been proposed. Substrate concentration is an important factor for practical application of the process; however, use of a high concentration of fructose has rarely been tested in the reaction because the conditions accelerate intermolecular side reactions to form adhesive humins. Humin byproducts stuck on reactor surfaces can make the production of 5-HMF on an industrial scale difficult. Therefore, developing a catalytic reaction system that can promote the synthesis of 5-HMF from highly concentrated fructose without causing adhesion of humins to reactors is needed. The present study demonstrated that activated carbons are promising materials for this system. Activated carbon catalyzed the conversion of fructose to 5-HMF without adhesion of humins to reactor vessels under practical conditions of high substrate concentration up to 73.2%. The catalytic activity was determined not only by the amount of surface weakly acidic oxygenated groups but also by the adsorption of fructose. In addition, strong adsorption of 5-HMF led to low selectivity of 5-HMF and the formation of adhesive humins. This is the first report to describe the synthesis of 5-HMF from solutions containing a fructose concentration greater than 70%.


Subject(s)
Charcoal/chemistry , Fructose/chemistry , Furaldehyde/analogs & derivatives , Water/chemistry , Catalysis , Chemistry Techniques, Synthetic , Furaldehyde/chemical synthesis , Furaldehyde/chemistry , Humic Substances , Solutions , Temperature
2.
J Antibiot (Tokyo) ; 72(11): 800-806, 2019 11.
Article in English | MEDLINE | ID: mdl-31366953

ABSTRACT

Coryneazolicin is a plantazolicin family peptide, belonging to linear azole-containing peptides (LAPs). Although coryneazolicin was previously synthesized by in vitro experiments, its biological activity has not been evaluated. In this report, the heterologous production of coryneazolicin was accomplished to obtain enough coryneazolicin for biological activity tests. The structure of coryneazolicin was confirmed by ESI-MS and NMR analyses. The biological activity tests indicated that coryneazolicin possessed potent antibacterial activity and cytotoxicity. Although antibacterial activity of plantazolicin was previously reported, cytotoxicity was newly found in coryneazolicin among plantazolicin type peptides. In addition, we revealed that coryneazolicin induced apoptosis on HCT116 and HOS cancer cell lines.


Subject(s)
Escherichia coli/metabolism , Peptides/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacology , Bacteria/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Humans , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...