Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Cancer Immunol Res ; 12(6): 719-730, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38558120

ABSTRACT

Small-cell lung cancer (SCLC) is an aggressive cancer for which immune checkpoint inhibitors (ICI) have had only limited success. Bispecific T-cell engagers are promising therapeutic alternatives for ICI-resistant tumors, but not all patients with SCLC are responsive. Herein, to integrate CD137 costimulatory function into a T-cell engager format and thereby augment therapeutic efficacy, we generated a CD3/CD137 dual-specific Fab and engineered a DLL3-targeted trispecific antibody (DLL3 trispecific). The CD3/CD137 dual-specific Fab was generated to competitively bind to CD3 and CD137 to prevent DLL3-independent cross-linking of CD3 and CD137, which could lead to systemic T-cell activation. We demonstrated that DLL3 trispecific induced better tumor growth control and a marked increase in the number of intratumoral T cells compared with a conventional DLL3-targeted bispecific T-cell engager. These findings suggest that DLL3 trispecific can exert potent efficacy by inducing concurrent CD137 costimulation and provide a promising therapeutic option for SCLC.


Subject(s)
CD3 Complex , Intracellular Signaling Peptides and Proteins , Lung Neoplasms , Membrane Proteins , Small Cell Lung Carcinoma , T-Lymphocytes , Tumor Necrosis Factor Receptor Superfamily, Member 9 , Small Cell Lung Carcinoma/immunology , Small Cell Lung Carcinoma/pathology , Small Cell Lung Carcinoma/drug therapy , Small Cell Lung Carcinoma/therapy , Small Cell Lung Carcinoma/metabolism , Humans , Lung Neoplasms/immunology , Lung Neoplasms/pathology , Lung Neoplasms/drug therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism , CD3 Complex/immunology , Animals , Mice , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Membrane Proteins/immunology , Antibodies, Bispecific/pharmacology , Antibodies, Bispecific/therapeutic use , Cell Line, Tumor , Lymphocyte Activation/immunology , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Xenograft Model Antitumor Assays
2.
Antibodies (Basel) ; 13(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38247567

ABSTRACT

Bispecific antibodies (BsAbs) can bind to two different antigens, enabling therapeutic concepts that cannot be achieved with monoclonal antibodies. Immuno-competent mice are essential for validating drug discovery concepts, necessitating the development of surrogate mouse BsAbs. In this study, we explored the potential of FAST-IgTM, a previously reported BsAb technology, for mouse BsAb production. We investigated charge-based orthogonal Fab mutations to facilitate the correct assembly of heavy and light chains of mouse antibodies and employed knobs-into-holes mutations to facilitate the heterodimerization of heavy chains. We combined five anti-CD3 and two anti-HER2 antibodies in mouse IgG1 and IgG2a subclasses. These 20 BsAbs were analyzed using mass spectrometry or ion exchange chromatography to calculate the percentages of BsAbs with correct chain pairing (BsAb yields). Using FAST-Ig, 19 out of the 20 BsAbs demonstrated BsAb yields of 90% or higher after simple protein A purification from transiently expressed antibodies in Expi293F cells. Importantly, the mouse BsAbs maintained their fundamental physicochemical properties and affinity against each antigen. A Jurkat NFAT-luciferase reporter cell assay demonstrated the combined effects of epitope, affinity, and subclasses. Our findings highlight the potential of FAST-Ig technology for efficiently generating mouse BsAbs for preclinical studies.

3.
Cancer Discov ; 11(1): 158-175, 2021 01.
Article in English | MEDLINE | ID: mdl-32847940

ABSTRACT

Agonistic antibodies targeting CD137 have been clinically unsuccessful due to systemic toxicity. Because conferring tumor selectivity through tumor-associated antigen limits its clinical use to cancers that highly express such antigens, we exploited extracellular adenosine triphosphate (exATP), which is a hallmark of the tumor microenvironment and highly elevated in solid tumors, as a broadly tumor-selective switch. We generated a novel anti-CD137 switch antibody, STA551, which exerts agonistic activity only in the presence of exATP. STA551 demonstrated potent and broad antitumor efficacy against all mouse and human tumors tested and a wide therapeutic window without systemic immune activation in mice. STA551 was well tolerated even at 150 mg/kg/week in cynomolgus monkeys. These results provide a strong rationale for the clinical testing of STA551 against a broad variety of cancers regardless of antigen expression, and for the further application of this novel platform to other targets in cancer therapy. SIGNIFICANCE: Reported CD137 agonists suffer from either systemic toxicity or limited efficacy against antigen-specific cancers. STA551, an antibody designed to agonize CD137 only in the presence of extracellular ATP, inhibited tumor growth in a broad variety of cancer models without any systemic toxicity or dependence on antigen expression.See related commentary by Keenan and Fong, p. 20.This article is highlighted in the In This Issue feature, p. 1.


Subject(s)
Adenosine Triphosphate , Neoplasms , Animals , Antibodies, Monoclonal/pharmacology , Antigens, Neoplasm , Immunotherapy , Mice , Neoplasms/drug therapy , Tumor Microenvironment , Tumor Necrosis Factor Receptor Superfamily, Member 9
SELECTION OF CITATIONS
SEARCH DETAIL