Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Biomater Sci Eng ; 9(11): 6094-6102, 2023 11 13.
Article in English | MEDLINE | ID: mdl-37856790

ABSTRACT

A polymer with high contents of ester bonds and iodine atoms was synthesized, exhibiting sufficient biodegradability and radioactivity for biomedical applications. The iodine moieties of the synthesized polyester can generate halogen bonding between molecules, which may develop additional functional properties through the bonding. In this study, poly(glycerol adipate) (PGA) was selected and synthesized as a polyester, which was then adequately conjugated with three different types of iodine compounds via the hydroxy groups of PGA. It was found that the iodine compounds could effectively work as donors of halogen bonding. The thermal analysis by differential scanning calorimetry (DSC) revealed that the glass transition temperature increased with the increase in the strength of interactions caused by π-π stacking and halogen bonding, eventually reaching 49.6 °C for PGA with triiodobenzoic groups. An elastomeric PGA with monoiodobenzoic groups was also obtained, exhibiting a high self-healing ability at room temperature because of the reconstruction of halogen bonding. Such multifaceted performance of the synthesized polyester with controllable thermal/mechanical properties was realized by halogen bonding, leading to a promising biomaterial with multifunctionality.


Subject(s)
Iodine Compounds , Iodine , Halogens/chemistry , Polymers/chemistry , Iodine/chemistry , Polyesters/chemistry , Elasticity
2.
ACS Macro Lett ; 11(6): 799-804, 2022 06 21.
Article in English | MEDLINE | ID: mdl-35658425

ABSTRACT

The birefringence of optical polymers is a great issue in optical devices, inhibiting major applications of polymers to optical lenses and films. In this study, we have synthesized effective bottlebrush polymers with which we could attain almost zero birefringence when mixed with optical poly(methyl methacrylate) (PMMA). In detail, the PMMA bottlebrush polymers (PMMA-BBP) were synthesized by the ring-opening metathesis polymerization (ROMP) of norbornene-terminated PMMA macromonomers prepared via atom transfer radical polymerization (ATRP). Linear PMMA and PMMA-BBP were mixed to fabricate blend-film samples (PMMA/PMMA-BBP), which were uniaxially drawn to introduce molecular orientations. Linear PMMA possessed a negative value for its orientation birefringence, while the value of PMMA/PMMA-BBP increased as the PMMA-BBP content increased, whose orientation birefringence could reach almost zero when the ratio of the linear PMMA to PMMA-BBP became 73:27, regardless of the magnitude of the strain. The results reveal that the orientation birefringence of PMMA can be effectively controlled and removed by blending the appropriate content of PMMA-BBP.


Subject(s)
Polymers , Polymethyl Methacrylate , Birefringence , Polymerization
3.
Nanotechnology ; 32(23)2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33657547

ABSTRACT

Magnetic resonance imaging (MRI) contrast agents with the particle diameter of around 3-10 nm hold the potential to be selectively uptaken by lymphatic vessels and be filtered in the kidney for final excretion. However, there are no existing MRI contrast agents based on gadolinium (Gd) complexes within the size of this range, and thus the selective imaging of the lymphatic system has not yet been achieved. In our previous report, we succeeded in fabricating nano-scale MRI contrast agents by complexing ordinary contrast agents (Gd-diethylenetriaminepentaacetic acid (DTPA)) with carboxylated nanodiamond (CND) particles to conquer this problem. However, DTPA has recently been reported to release Gd ions in the course of time, leading to the potential danger of severe side effects in the human body. In this study, we utilized cyclic-chained DOTA as an alternative chelating material for DTPA to fabricate CND-based MRI contrast agents for the selective lymphatic imaging. The newly fabricated contrast agents possessed the diameter ranging from 3 to 10 nm in distilled water and serum, indicating that these particles can be selectively uptaken by lymphatic vessels and effectively filtered in the kidney. Furthermore, the DOTA-applied CND contrast agents exhibited stronger MRI visibility in water and serum compared to DTPA-applied CND contrast agents. These results indicate that DOTA-applied CND contrast agents are promising materials for the selective MR imaging of lymphatic systems.


Subject(s)
Nanodiamonds , Contrast Media , Gadolinium DTPA , Heterocyclic Compounds , Humans , Lymphatic System , Magnetic Resonance Imaging/methods , Organometallic Compounds
4.
Front Chem ; 8: 547, 2020.
Article in English | MEDLINE | ID: mdl-32766205

ABSTRACT

With increasing global power demand, thermal energy storage technology could play a role ensuring a sustainable energy supply in power generation from renewable energy sources and power demand concentration. Hydrates have high potential as phase change materials (PCMs) for the use as a thermal energy storage medium. To develop thermal energy storage technology using a hydrate-based material, further investigation of thermophysical properties and the selection of a suitable hydrate are required. Tetrabutylphosphonium oxalate (TBPOx) ionic semiclathrate hydrate contains oxalic acid in salt form, as a guest compound, which is classified as carboxylic acid group with low environmental impact. In the present study, the phase equilibrium temperature and the dissociation heat of TBPOx hydrate were measured. The highest equilibrium temperature of the solid hydrate formed was 9.4°C at the mass fraction 0.35 of TBPOx in aqueous solution. The largest dissociation heat was 186.0 ± 0.5 kJ·kg-1 at the mass fraction of 0.35. Comparing with other PCMs with close phase equilibrium temperatures, TBPOx hydrate is superior in safety and sustainability. These results indicate that TBPOx hydrate would be suitable as the thermal storage medium for the general air conditioning systems.

5.
Soft Matter ; 15(27): 5521-5528, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31241635

ABSTRACT

The structure-property relationship of an elastic physical gel, obtained by simply quenching syndiotactic polypropylene (sPP)/decahydronaphthalene solution with liquid nitrogen, was investigated based on small-angle neutron scattering (SANS) analysis. The SANS analysis revealed that sPP nanocrystals with a constant radius of 4-5 nm existed in the sPP gels regardless of the sPP concentration, whereas the correlation length of the nanocrystals drastically decreased from ∼130 to ∼20 nm upon increasing the sPP concentration from 2 to 12 wt%. The volume fraction and the number density of the sPP nanocrystals increased monotonously with the increase in the sPP concentration. The rheological properties and the melting behavior of the quenched sPP gels were highly consistent with the number density of the nanocrystals calculated from the SANS analysis, strongly suggesting that the sPP nanocrystals actually worked as crosslinking points by inducing elasticity in the quenched sPP gels.

6.
Biomacromolecules ; 18(6): 1845-1854, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28467049

ABSTRACT

Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol-1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment-segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.


Subject(s)
Elastomers/chemical synthesis , Green Chemistry Technology , Polyesters/chemical synthesis , Butadienes/chemistry , Caproates/chemistry , Chemistry Techniques, Synthetic , Hemiterpenes/chemistry , Lactones/chemistry , Materials Testing , Pentanes/chemistry , Polymerization , Polystyrenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...