Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 490: 93-105, 2014 Aug 15.
Article in English | MEDLINE | ID: mdl-24840284

ABSTRACT

OMI HCHO is validated over the continental US (CONUS), and used to analyze regional sources in Northeast Asia (NA) and Southeast Asia (SA). OMI HCHO Version 2.0 data show unrealistic trends, which prompted the production of a corrected OMI HCHO data set. EOF and SVD are utilized to compare the spatial and temporal variability between OMI HCHO against GOME and SCIAMACHY, and against GEOS-Chem. CONUS HCHO chemistry is well studied; its concentrations are greatest in the southeastern US with annual cycle maximums corresponding to the summer vegetation. The corrected OMI HCHO agrees with this understanding as well as with the other sensors measurements and has no unrealistic trends. In NA the annual cycle is super-posed by extremely large concentrations in polluted mega-cities. The other sensors generally agree with NA's OMI HCHO regional distribution, but megacity signal is not seen in GEOS-Chem. Our study supports the findings proposed by others that the emission inventory used in GEOS-Chem significantly underestimates anthropogenic influence on HCHO emission over megacities. The persistent mega-city signal is also present in SA. In SA the spatial and temporal patterns of OMI HCHO show a maximum in the dry season. The patterns are in remarkably good agreement with fire counts, which illustrates that the variability of HCHO over SA is strongly influenced by biomass burning. The corrected OMI HCHO data has realistic trends, conforms to well-known sources over CONUS, and has shown a stationary large concentration over polluted Asian mega-cities, and a widespread biomass burning in SA.


Subject(s)
Air Pollutants/analysis , Air Pollution/statistics & numerical data , Environmental Monitoring/methods , Satellite Imagery , Asia , Cities/statistics & numerical data , Ozone/analysis
2.
J Geophys Res ; 116(D5)2011 Mar 16.
Article in English | MEDLINE | ID: mdl-33716354

ABSTRACT

[1] We combine aircraft measurements (Second Texas Air Quality Study, Megacity Initiative: Local and Global Research Observations, Intercontinental Chemical Transport Experiment: Phase B) over the United States, Mexico, and the Pacific with a 3-D model (GEOS-Chem) to evaluate formaldehyde column (ΩHCHO) retrievals from the Ozone Monitoring Instrument (OMI) and assess the information they provide on HCHO across local to regional scales and urban to background regimes. OMI ΩHCHO correlates well with columns derived from aircraft measurements and GEOS-Chem (R = 0.80). For the full data ensemble, OMI's mean bias is -3% relative to aircraft-derived ΩHCHO (-17% where ΩHCHO > 5 × 1015 molecules cm-2) and -8% relative to GEOS-Chem, within expected uncertainty for the retrieval. Some negative bias is expected for the satellite and model, given the plume sampling of many flights and averaging over the satellite and model footprints. Major axis regression for OMI versus aircraft and model columns yields slopes (95% confidence intervals) of 0.80 (0.62-1.03) and 0.98 (0.73-1.35), respectively, with no significant intercept. Aircraft measurements indicate that the normalized vertical HCHO distribution, required by the satellite retrieval, is well captured by GEOS-Chem, except near Mexico City. Using measured HCHO profiles in the retrieval algorithm does not improve satellite-aircraft agreement, suggesting that use of a global model to specify shape factors does not substantially degrade retrievals over polluted areas. While the OMI measurements show that biogenic volatile organic compounds dominate intra-annual and regional ΩHCHO variability across the United States, smaller anthropogenic ΩHCHO gradients are detectable at finer spatial scales (∼20-200 km) near many urban areas.

3.
Philos Trans A Math Phys Eng Sci ; 365(1856): 1741-51, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17513262

ABSTRACT

Space-borne column measurements of formaldehyde (HCHO), a high-yield oxidation product of volatile organic compounds (VOCs), represent important constraints for quantifying net regional fluxes of VOCs. Here, we interpret observed distributions of HCHO columns from the Global Ozone Monitoring Experiment (GOME) over tropical South America during 1997-2001. We present the first comparison of year-long in situ isoprene concentrations and fire-free GOME HCHO columns over a tropical ecosystem. GOME HCHO columns and in situ isoprene concentrations are elevated in the wet and dry seasons, with the highest values in the dry season. Previous analysis of the in situ data highlighted the possible role of drought in determining the elevated concentrations during the dry season, inferring the potential of HCHO columns to provide regional-scale constraints for estimating the role of drought on isoprene emissions. The agreement between the observed annual cycles of GOME HCHO columns and Along-Track Scanning Radiometer firecount data over the Amazon basin (correlations typically greater than 0.75 for a particular year) illustrates the potential of HCHO column to provide quantitative information about biomass burning emissions.


Subject(s)
Atmosphere , Biomass , Formaldehyde , Spacecraft , Butadienes , Hemiterpenes , Ozone , Pentanes , Seasons , South America , Tropical Climate
4.
Appl Opt ; 45(10): 2352-9, 2006 Apr 01.
Article in English | MEDLINE | ID: mdl-16608004

ABSTRACT

We present, to the best of our knowledge, a new method to retrieve tropospheric ozone (O3) profiles from ground-based ultraviolet spectroscopic measurements. This method utilizes radiance spectra in the Huggins bands (i.e., 300-340 nm) measured at three off-axis angles (e.g., 45 degrees, 75 degrees, and 85 degrees) normalized to direct-Sun irradiances or zenith-sky radiances with the total column O3 derived from direct-Sun or zenith-sky measurements as a constraint. The vertical resolution of the retrieved O3 values ranges from approximately 3 km near the surface to approximately 12 km at 20 km altitude. This method can be used to measure diurnal variation of tropospheric O3 profiles and is complementary to the Umkehr method that mainly measures ozone profiles in the stratosphere.

5.
Appl Opt ; 44(16): 3312-9, 2005 Jun 01.
Article in English | MEDLINE | ID: mdl-15943268

ABSTRACT

We present a novel technique for retrieving ozone (O3) profiles and especially tropospheric O3 from airborne UV/visible spectrometer measurements. This technique utilizes radiance spectra from one down-looking and two up-looking (85 degrees and 75 degrees) directions, taking advantage of the O3 absorption structure in the Huggins (300-340-nm) and Chappuis (530-650-nm) bands. This technique is especially sensitive to tropospheric O3 below and < or =8 km above the aircraft with a vertical resolution of 2-6 km and is sensitive to lower and middle stratospheric O3 with a vertical resolution of 8-15 km. It can measure tropospheric O3 at spatial resolutions of 2 km x 2 km or higher and is therefore well suited for regional air-quality studies and validation of satellite measurements.


Subject(s)
Aircraft , Algorithms , Atmosphere/analysis , Environmental Monitoring/methods , Geographic Information Systems , Ozone/analysis , Spectrophotometry, Ultraviolet/methods
6.
Appl Opt ; 44(7): 1296-304, 2005 Mar 01.
Article in English | MEDLINE | ID: mdl-15765710

ABSTRACT

Array detector-based instruments are now fundamental to measurements of ozone and other atmospheric trace gases from space in the ultraviolet, visible, and infrared. The present generation of such instruments suffers, to a greater or lesser degree, from undersampling of the spectra, leading to difficulties in the analysis of atmospheric radiances. We provide extended analysis of the undersampling suffered by modern satellite spectrometers, which include the Global Ozone Monitoring Experiment, Scanning Imaging Absorption Spectrometer for Atmospheric Chartography, Ozone Monitoring Instrument, and Ozone Mapping and Profiler Suite. The analysis includes basic undersampling, the effects of binning into separate detector pixels, and the application of high-resolution Fraunhofer spectral data to correct for undersampling in many useful cases.

SELECTION OF CITATIONS
SEARCH DETAIL
...