Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(8): e19215, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37664721

ABSTRACT

The chemokine CCL21 regulates immune and cancer cell migration through its receptor CCR7. The Ccl21a gene encodes the isoform CCL21-Ser, predominantly expressed in the thymic medulla and the secondary lymphoid tissues. This study examined the roles of CCL21-Ser in the antitumor immune response in Ccl21a-knockout (KO) mice. The Ccl21a-KO mice showed significantly decreased growth of B16-F10 and YUMM1.7 melanomas and increased growth of MC38 colon cancer, despite no significant difference in LLC lung cancer and EO771 breast cancer. The B16-F10 tumor in Ccl21a-KO mice showed melanoma-specific activated CD8+ T cell and NK cell infiltration and higher Treg counts than wild-type mice. B16-F10 tumors in Ccl21a-KO mice showed a reduction in the positive correlation between the ratio of regulatory T cells (Tregs) to activated CD8+ T cells and tumor weight. In Ccl21a-KO tumor, the intratumoral Tregs showed lower co-inhibitory receptors TIM-3 and TIGIT. Taken together, these results suggest that endogenous CCL21-Ser supports melanoma growth in vivo by maintaining Treg function and suppressing antitumor immunity by CD8+ T cells.

2.
Cancer Sci ; 114(9): 3509-3522, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37421165

ABSTRACT

CCL21-Ser, a chemokine encoded by the Ccl21a gene, is constitutively expressed in the thymic epithelial cells and stromal cells of secondary lymphoid organs. It regulates immune cell migration and survival through its receptor CCR7. Herein, using CCL21-Ser-expressing melanoma cells and the Ccl21a-deficient mice, we demonstrated the functional role of cancer cell-derived CCL21-Ser in melanoma growth in vivo. The B16-F10 tumor growth was significantly decreased in Ccl21a-deficient mice compared with that in wild-type mice, indicating that host-derived CCL21-Ser contributes to melanoma proliferation in vivo. In Ccl21a-deficient mice, tumor growth of melanoma cells expressing CCL21-Ser was significantly enhanced, suggesting that CCL21-Ser from melanoma cells promotes tumor growth in the absence of host-derived CCL21-Ser. The increase in tumor growth was associated with an increase in the CCR7+ CD62L+ T cell frequency in the tumor tissue but was inversely correlated with Treg frequency, suggesting that naïve T cells primarily promote tumor growth. Adoptive transfer experiments demonstrated that naïve T cells are preferentially recruited from the blood into tumors with melanoma cell-derived CCL21-Ser expression. These results suggest that CCL21-Ser from melanoma cells promotes the infiltration of CCR7+ naïve T cells into the tumor tissues and creates a tumor microenvironment favorable for melanoma growth.


Subject(s)
Melanoma , T-Lymphocytes , Mice , Animals , Receptors, CCR7/metabolism , Chemokine CCL21/metabolism , Melanoma/pathology , Tumor Microenvironment
3.
Bioanalysis ; 14(22): 1413-1421, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36655683

ABSTRACT

Background: Although cell-mediated cytotoxicity has been evaluated with various protocols, methods for monitoring cytotoxicity in a time series have not been established. This work describes a method for evaluating cytotoxicity using a multi-chamber real-time luminometer. Materials & methods: The efficiency of effector CD8+ T-cell expansion from melanoma-bearing splenocytes was analyzed. The effect of CD8+ T cells on the viability of luciferase-expressing target cells was measured by bioluminescence. Results: Melanoma-specific effector CD8+ T cells were differentiated by in vitro coculture. The melanoma cell growth was significantly inhibited in the presence of in vitro-expanded T cells in the bioluminescence-based time-lapse analysis. Conclusion: The bioluminescence-based assay is a useful method for monitoring the time course of cell viability of target tumor cells.


Subject(s)
CD8-Positive T-Lymphocytes , Melanoma , Humans , CD8-Positive T-Lymphocytes/pathology , Luciferases, Firefly/pharmacology , Melanoma/pathology
4.
Biochem Biophys Rep ; 28: 101128, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34527817

ABSTRACT

Chemotactic factors locally secreted from tissues regulate leukocyte migration via cell membrane receptors that induce intracellular signals. It has been suggested that neutrophils stimulated by bacterial peptides secrete a secondary stimulant that enhances the chemotactic cell migration of the surrounding cells. This paracrine mechanism contributes to chemokine-dependent neutrophil migration, however, it has not yet been extensively studied in lymphocytes. In this study, we provide evidence that lymphocytes stimulated by the chemokine, CXCL12, affect the CXCR4-independent chemotactic response of the surrounding cells. We found that CXCR4-expressing lymphocytes or the conditioned medium from CXCL12-stimulated cells promoted CXCR4-deficient cell chemotaxis. In contrast, the conditioned medium from CXCL12-stimulated cells suppressed CCR7 ligand-dependent directionality and the cell migration speed of CXCR4-deficient cells. These results suggest that paracrine factors from CXCL12-stimulated cells navigate surrounding cells to CXCL12 by controlling the responsiveness to CCR7 ligand chemokines and CXCL12.

SELECTION OF CITATIONS
SEARCH DETAIL
...