Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 123: 104702, 2021 11.
Article in English | MEDLINE | ID: mdl-34365097

ABSTRACT

Tendons exhibit a hierarchical collagen structure, wherein higher-level components, such as collagen fibres and fascicles, are elongated, slid, and rotated during macroscopic stretching. These mechanical behaviours of collagen fibres play important roles in stimulating tenocytes, imposing stretching, compression, and shear deformation. It was hypothesised that a lack of local fibre behaviours in healing tendon tissue may result in a limited application of mechanical stimuli to cells within the tissue, leading to incomplete recovery of tissue structure and functions in regenerated tendons. Therefore, the present study aimed to measure the microscopic strain field in the healing tendon tissue. A central third defect was created in the patellar tendon of mice, and the regenerated tissue in the defect was examined by tensile testing, collagen fibre analysis, and local strain measurement using confocal microscopy at 3 and 6 weeks after surgery. Healing tissue at 3 weeks exhibited a significantly lower strength and disorganised collagen fibre structure compared with the normal tendon. These characteristics at 6 weeks remained significantly different from those of the normal tendon. Moreover, the magnitude of local shear strain in the healing tissue under 4% tissue strain was significantly smaller than that in the normal tendon. Differences in the local strain field may be reflected in the cell nuclear shape and possibly the amount of mechanical stimuli applied to the cells during tendon deformation. Accordingly, restoration of a normal local mechanical environment in the healing tissue may be key to a better healing outcome of tendon injury.


Subject(s)
Patellar Ligament , Animals , Mice , Patella , Tendons , Tensile Strength , Wound Healing
2.
J Orthop Res ; 38(1): 150-159, 2020 01.
Article in English | MEDLINE | ID: mdl-31254408

ABSTRACT

Tendon cells, tenocytes, are constantly subjected to mechanical stress in vivo, which maintains a level of cellular tension. When a tendon is subjected to overloading, local rupture of collagen fibers are induced, which deprives tenocytes of mechanical stress, lowers their cellular tension level and upregulates their catabolism. In addition, leukocytes are attracted to the rupture sites and produce interleukin-1ß (IL-1ß), and this exogenous IL-1ß also stimulates tenocyte catabolism. We tested a hypothesis that catabolic tenocytes with low cellular tension at the rupture sites excessively respond to the exogenous IL-1ß and further upregulate matrix metalloproteinase 1 (MMP-1) gene expression. Tenocytes from rabbit Achilles tendon were cultured on the following substrates: glass or polydimethylsiloxane micropillar substrates with a height of 2, 4, or 8 µm. Following a 3-day IL-1ß stimulation at a concentration of 0, 1, 10, or 100 pM, the effects of IL-1ß stimulation on cell morphology and MMP-1 gene expression was analysed with fluorescent microscopy and fluorescence in situ hybridization, respectively. In addition, the effects of IL-1ß stimulation on cell membrane fluidity were examined. It was demonstrated that the cells on 8-µm-height micropillars exhibited a greater response than those on rigid substrates with flat (glass) and topologically the same surface (2-µm-height micropillars) to IL-1ß when supplied at the same concentration. Besides this, membrane fluidity was lower in the cells on micropillars. Therefore, it appears that cellular attachment to softer substrates lowers the cellular actin cortex tension, reducing the membrane fluidity and possibly elevating the sensitivity of IL-1 receptors to ligand binding. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 38:150-159, 2020.


Subject(s)
Interleukin-1beta/pharmacology , Matrix Metalloproteinase 1/genetics , Tenocytes/pathology , Animals , Cells, Cultured , Gene Expression , In Situ Hybridization, Fluorescence , Male , Membrane Fluidity , Rabbits , Stress, Mechanical , Tenocytes/drug effects , Tenocytes/enzymology
SELECTION OF CITATIONS
SEARCH DETAIL
...